F.A. Mouravieva*, M.P. Arefieva,b,c**, V.V. Silantieva***, B.I. Gareeva, G.A. Batalina, M.N. Urazaevaa****, T.V. Kropotovaa*****, I.B. Vybornovaa******
aKazan Federal University, Kazan, 420008 Russia
bGeological Institute, Russian Academy of Sciences, Moscow, 119017 Russia
cNatural History Museum, St. Alexis Hermitage, Novoalekseevka, Yaroslavl region, 152049 Russia
E-mail: *fedor.mouraviev@kpfu.ru, **mihail_3000@inbox.ru, ***vsilant@gmail.com, ****urazaeva.m.n@mail.ru, *****Tatyana.Kropotova@kpfu.ru, ******irflying@mail.ru
Full text PDF
Abstract
In this work we focus on sedimentology, mineralogy, grain size, and geochemistry of red mudstones of the Urzhumian (Wordian) and Severodvinian (Capitinian) reference section of the Monastyrskii ravine to specify their depositional settings and paleoclimatic conditions.
In the section, two types of mudstones have been identified based on their structure: a) massive and b) laminated. The former ones do not contain faunal and plant remains and are often altered by pedogenic processes, the latter ones may have ostracod and bivalve shells or fish scales and sometimes bear the sings of short-term shallowing and drying. The bulk geochemical analysis of siliciclastics has revealed a high degree of weathering (chemical index of alternation, CIA ~ 72–79) of both types of mudstones, as well as their source rocks (Permian red beds of the Cis-Ural plains). Massive mudstones have non-erosional contacts, they are confined to the regressive stages of sedimentary cycles, and their composition is dominated by fine and medium silt with angular grains. In the geochemical profile of paleosols developed on massive mudstones, under almost constant CIA values, there have been found levels with the high Ti/Zr ratio, which corresponds to the bimodal distribution of grain size. This could be an evidence of an input of clastic material during the pedogenesis process, and the surface morphology of quartz grains indicates their aeolian origin. The study of the paleosol profiles widely represented in the section has allowed reconstruction of the semi-arid climate with distinct rainfall seasonality.
The clastic material has been transferred into the Urzhumian sedimentary basin from the Cis-Ural plains by the fluvial way under the semi-arid climate conditions, thereby leading to the formation of laminated mudstones in shallow lakes with periodical drying and on floodplains. An increase of the aeolian silt transport occurred in dry seasons during the stages of lake regressions, when the fluvial plains prograded basinwards simultaneously with the formation of soil cover.
Keywords: Permian, Urzhumian stage, Severodvinian stage, mudstones, paleosols, aeolian silt, sedimentary cycles
Acknowledgments. This study was funded by the subsidy allocated to Kazan Federal University as part of the state program for increasing its competitiveness among the world's leading centers of science and education, as well as supported in part by the Russian Foundation for Basic Research (projects no. 16-05-00706 and 16-04-01062).
Figure Captions
Fig. 1. The Urzhumian and Severodvinian section in the Monastyrskii ravine with sampling levels.
Fig. 2. The structural and textural characteristics of red mudstones: a, b, c – laminated mudstones, a – occurrence in the section, platy jointing visible; Severodvinian stage, layer М15/34, b – subhorizontal microlamination, lighter silt layers have sharp lower boundaries and graded upper boundaries, c – subrounded silt and fine-sand grains; d, e, f – massive mudstones, d – occurrence in the section, blocky structure and gleying spots visible, Urzhumian stage, layer М08/26, e – spotted microtexture, silt grains floated in the clayey-ferruginous matrix, f – angular and subangular silt and sand grains.
Fig. 3. The grain size composition of red mudstones: a – “sand – silt – clay” diagram, by [28], b – “mean grain size (M̅) – sorting (σ̅ )” diagram. Hereinafter: triangles – massive mudstones, squares – laminated mudstones.
Fig. 4. a – the mineralogical composition of mudstones, arrows show the directions of “maturation” of rocks in the sedimentation zone, by [29]; b – Al2O3–CaO+Na2O–K2O diagram in mole fractions for mudstones, UCC – upper continental crust composition, gray region indicates the range of composition of normal igneous rocks, according to [30] (see text for explanation).
Fig. 5. Ternary plots of the chemical composition of mudstones: a –SiO2/10–CaO+MgO–Na2O+K2O plot, by [31]; b –CaO–Na2O–K2O plot, by [32], A – andesites, Gr – granodiorites, G – granites, R – recycled sediments.
Fig. 6. Vertical geochemical profiles and histograms of the grain size composition of paleosols on red mudstones: a – gleyed calcisol, layers М06/1-2, Urzhumian stage, central part; b – gleyed vertisol, layers М08/30-31, Urzhumian stage, upper part. Slickensides – slipping faults on the surfaces of blocks.
Fig. 7. The morphology of the surface of quartz grains of red mudstones: a – sand grain of the rounded shape with numerous crescentic percussion marks, paleosol, layer М06/2, Urzhumian stage; b – detailed image of the area marked in а, crescentic percussion marks showed with arrows; c – a grain with crescentic percussion marks widened by leaching is in the center, smaller grains with conchoidal fracture near it, massive mudstone, layer М08/69, Urzhumian stage; d – flat surfaces of fresh fracture planes on the small grain, paleosol, layer М06/2, Urzhumian stage; e – sand grain of the angular shape, laminated mudstone, layer М15/34, Severodvinian stage; f – detailed image of the area marked in e, arrows show new silica formations.
References
- Ignatiev V.I. Stratotypes and Basic Sections of the Upper Permian in the Volga Region and Prikamye. Zakonomernosti fatsial'nykh izmenenii verkhnepermskikh otlozhenii Uralo-Povolzh'ya [Patterns of Facial Changes of Upper Permian Deposits of Ural–Volga Region]. Kazan, Ekotsentr, 1996, pp. 191–207. (In Russian)
- Resolution of the Interdepartmental Stratigraphic Committee and Its Standing Committees. St. Petersburg, VSEGEI, 2006, no. 36. 64 p. (In Russian)
- Larochkina I.A. (Ed.) Geological Heritage of the Republic of Tatarstan. Kazan, Akvarel'-Art, 2007. 296 p. (In Russian)
- Forsh N.N. On stratigraphic partition and correlation of the sections of the Tatarian stage in the east of the Russian Platform based on the complex of lithologic and stratigraphic, paleomagnetic, and paleontological data. Tr. Vses. Neft. Nauchno-Issled. Geologorazved. Inst., Leningrad, Gostoptekhizdat, 1963, vol. 204, pp 175–211. (In Russian)
- Sementovskii Yu.V. Conditions of Formation of Mineral Deposits during the Late Permian Era in the East of the Russian Platform. Kazan, Tatar. Kn. Izd., 1973. 256 p. (In Russian)
- Silantiev V.V., Esin D.N. The reference section of the Tatarian stage in the Monastyrskii Ravine (Kazan Volga region). Vestn. Mosk. Univ., Ser. 4: Geol., 1993, no. 4, pp. 38–48. (In Russian)
- Gusev A.K. Stratotypes and Basic Sections of the Upper Permian in the Volga Region and Prikamye. Tatarskii yarus [Tatarian Stage]. Kazan, Ekotsentr, 1996, pp. 113–141. (In Russian)
- Silantiev V.V., Zharkov I.Ya., Sungatullin R.Kh., Khassanov R.R. International Symposium “Upper Permian Stratotypes of the Volga Region”. Guidebook of Geological Excursion. Kazan, Izd. Kazan. Univ., 1998. 79 p. (In Russian)
- Naugol'nykh S.V. Geological Heritage of the Republic of Tatarstan. Kazanskaya i tatarskaya rastitel'nost' permskogo perioda [Kazanian and Tatarian Plants of the Permian Period]. Kazan, Akvarel'–Art, 2007, pp. 236–254. (In Russian)
- Minikh M.G., Minikh A.V., Molostovskaya I.I., Andrushkevich S.O. On the question of the point of stratigraphic boundary of Severodvinian stage. Nedra Povolzh'ya Prikaspiya, 2009, vol. 58, pp. 31–38. (In Russian)
- Inozemtsev S.A., Naugolnykh S.V., Yakimenko E.Y. Upper Permian paleosols developed from limestone in the middle reaches of the Volga River: Morphology and genesis. Eurasian Soil Sci., 2011, vol. 44, no. 6, pp. 604–617. doi: 10.1134/S1064229311060068.
- Nurgalieva N.G., Silantiev V.V., Vetoshkina O.S., Urazaeva M.N. Isotope carbon and oxygen indicators of the key section of Urzhumian and Tatarian Formations. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2012, vol. 154, no. 1, pp. 189–196. (In Russian)
- Khramov A.N. Paleomagnetic study of Upper Permian and Lower Triassic sections in the north and east of the Russian Platform. Tr. Vses. Neft. Nauchno–Issled. Geologorazved. Inst., Leningrad, Gostoptekhizdat, 1963, vol. 204, pp 145–175. (In Russian)
- Westfahl M., Surkis Yu.F., Gurevich E.L., Khramov A.N. Kiama–Illavarra geomagnetic reversal recorded in a Tatarian stratotype (the Kazan Region). Izv., Phys. Solid Earth, 2005, vol. 41, no. 8, pp. 634–653.
- Burov B.V., Boronin V.P. Palaeomagnetic Illawara zone in the Upper Permian and Lower Triassic deposits of the Middle Volga Region. Materialy po stratigrafii verkhnei permi na territorii SSSR [Materials on Stratigraphy of the Upper Permian in the Territory of the Soviet Union]. Kazan, Izd. Kazan. Univ., 1977, pp. 25–52. (in Russian)
- Gialanella P.R., Heller F., Haag M., Nurgaliev D., Borisov A., Burov B., Jasonov P., Khasanov D., Ibragimov S., Zharkov I. Late Permian magnetostratigraphy on the eastern Russian platform. Geol. Mijnbouw, 1997, vol. 76, no. 1, pp. 145–154. doi: 10.1023/A:1003114003686.
- Balabanov Yu.P., Minikh M.G., Minikh A.V. Kiama–Illavarra reversal in the reference section of Biarmian–Tatarian boundary deposits of Permian in Monastery Ravine. Materialy Vtoroi Vseros. konf. “Verkhnii paleozoi Rossii: Stratygrafiya i fatsial'nyi analiz”. [Proc. 2nd All-Russ. Conf.: Upper Paleozoic of Russia: Stratigraphy and Facial Analysis]. Kazan, Izd. Kazan. Univ., 2009, pp. 168–169. (In Russian)
- Nurgaliev D.K., Silantiev V.V., Nikolaeva S.V. (Eds.) Type and Reference Sections of the Middle and Upper Permian of the Volga and Kama River Regions. A Field Guidebook of XVIII International Congress on Carboniferous and Permian. Kazan, Kazan Univ. Press, 2015. 208 p.
- Mouraviev F.A., Arefiev M.P., Silantiev V.V., Khasanova N.M., Nizamutdinov N.M., Trifonov A.A. Red paleosols in the key sections of the Middle and Upper Permian of the Kazan Volga region and their paleoclimatic significance. Paleontol. J., 2015, vol. 49, no. 10, pp. 1150–1159. doi: 10.1134/S0031030115110064.
- Arefiev M.P., Silantiev V.V. Sedimentological and geochemical criteria for the determination of cyclicity in the reference section of Urzhumian and Severodvinian stages “Monastyrskii ravine” (Kazan Volga region). Materialy 10 Ural'skogo litologicheskogo soveschaniya “Virtual'niye i real'niye litologicheskiye modeli” [Proc. 10th Uralian Lithological Conf.: Virtual and Real Lithological Models]. Ekaterinburg, Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, 2014, pp. 18–20. (In Russian)
- Khaziev R.R., Krinari G.A., Nurgalieva N.G., Gareev B.I., Batalin G.A. Some aspects concerning the formation of clayey sediments of the Urzhumian stage by the geochemical data on the reference section. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2015, vol. 157, no. 2, pp. 106–117. (In Russian)
- Frolov V.T. Lithology. Handbook. Vol. 3. Moscow, Izd. Mosk. Univ., 1995. 352 p. (In Russian)
- Retallack G.J. Paleosols and Applications. Field Recognition of Paleosols. Reinhardt J., Sigleo W.R. (Eds.). Geol. Soc. Am., Spec. Pap., 1988, art. 216, pp. 1–21. doi: 10.1130/SPE216-p1.
- Mack G.H., James W.C., Monger H.C. Classification of paleosols. Geol. Soc. Am. Bull., 1993, vol. 105, no. 2, pp. 129–136. doi: 10.1130/0016-7606(1993)105<0129:COP>2.3.CO.
- Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, vol. 299, pp. 715–717. doi: 10.1038/299715a0.
- Babechuk M.G., Widdowson M., Kamber B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol., 2014, vol. 363, pp. 56–75. doi: 10.1016/j.chemgeo.2013.10.027.
- Blott S. J., Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Processes Landforms, 2001, vol. 26, no. 11, pp. 1237–1248. doi: 10.1002/esp.261.
- Folk R.L. Petrology of Sedimentary Rocks. Austin, Tex., Hemphill Publ. Co., 1980. 184 p.
- Shvanov V.N. Petrography of Sandy Rocks (Composition, Systematization, and Description of Mineral Classes). Leningrad, Nedra, 1987. 269 p. (In Russian)
- Fedo C.M., Nesbitt H.W., Young G.M. Unraveling the effects of potassium metasomatism in sedimentary-rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 1995, vol. 23, pp. 921–924. doi: 10.1130/0091-7613.
- Letnikova E.F., Veshcheva S.V., Proshenkin A.I., Kuznetsov A.B. Neoproterozoic terrigenous deposits of the Tuva-Mongolian massif: Geochemical correlation, sourcelands, and geodynamic reconstruction. Russ. Geol. Geophys., 2011, vol. 52, no. 12, pp. 1662–1671. doi: 10.1016/j.rgg.2011.11.013.
- Bhatia M.R. Plate tectonics and geochemiсal composition of sandstones. J. Geol., 1983, vol. 91, no. 6, pp. 611–627.
- Soreghan G.S., Soreghan M.J., Hamilton M.A. Origin and significance of loess in Late Paleozoic western Pangaea: A record of tropical cold. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2008, vol. 268, no. 3, pp. 234–259. doi: 10.1016/j.palaeo.2008.03.050.
- Sweet A.C., Soreghan L.S., Sweet D.E., Soreghan M.J., Madden A.S. Permian dust in Oklahoma: Source and origin for Middle Permian (Flowerpot-Blaine) redbeds in Western Tropical Pangaea. Sediment. Geol., 2013, vols. 284–285, pp. 181–196. doi: 10.1016/j.sedgeo.2012.12.006.
- Giles J.M., Soreghan M.J., Benison K.C., Soreghan G.S., Hasiotis S.T. Lakes, loess, and paleosols in the Permian Wellington Formation of Oklahoma, U.S.A.: Implications for paleoclimate and paleogeography of the Midcontinent. J. Sediment. Res., 2013, vol. 83, no. 10, pp. 825–846. doi: 10.2110/jsr.2013.59.
- Foster T.M., Soreghan G.S., Soreghan M.J., Benison K.C., Elmore R.D. Climatic and paleogeographic significance of eolian sediment in the Middle Permian Dog Creek Shale (Midcontinent U.S.). Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, vol. 402, pp. 12–29. doi: 10.1016/j.palaeo.2014.02.031.
- Lopez M., Gand G., Garric J., Körner F., Schneider J. The playa environments of the Lodève Permian basin (Languedoc-France). J. Iberian Geol., 2008, vol. 34, no. 1, pp. 29–56.
- Obrist-Farner J., Yang W. Implications of loess and fluvial deposits on paleoclimatic conditions during an icehouse–hothouse transition, Capitanian upper Quanzijie low-order cycle, Bogda Mountains, NW China. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2016, vol. 441, part 4, pp. 959–981. doi: 10.1016/j.palaeo.2015.10.041.
- Vos K., Vandenberghe N., Elsen J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Sci. Rev., 2014, vol. 128, pp. 93–104. doi: 10.1016/j.earscirev.2013.10.013.
- Naugolnykh S.V. Climate in the Epochs of Major Biospheric Transformations. Paleopochvy permi i rannego triasa [Paleosols of the Permian and Early Triassic]. Semikhatov M.A., Chumakov N.M. (Eds.). Moscow, Nauka, 2004, pp. 221–229. (In Russian)
- Gibbs M.T., Rees P.M., Kutzbach J.E., Ziegler A.M., Behling P.J., Rowley D.B. Simulations of Permian climate and comparisons with climate-sensitive sediments. J. Geol., vol. 110, no. 1, pp. 33–55. doi: 10.1086/324204.
- Parrish J.T. The Permian of Northern Pangea. Geologic Evidence of Permian Climate. Scholle P.A., Tadeusz M.P., Ulmer-Scholle D.S. (Eds.). London, Springer-Verlag, 1995, pp. 53–61.
For citation: Mouraviev F.A., Arefiev M.P., Silantiev V.V., Gareev B.I., Batalin G.A., Urazaeva M.N., Kropotova N.V., Vybornova I.B. Paleogeography of accumulation of the Middle-Upper Permian red mudstones in the Kazan Volga Region. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 4, pp. 548–568. (In Russian)

The content is available under the license Creative Commons Attribution 4.0 License.