N.Yu. Stepanova*, T.R. Latypova**, L.V. Novikova***
Kazan Federal University, Kazan, 420008 Russia
E-mail: *nstepanova.kazan96@gmail.com, **ta-mik._5@mail.ru, ***ljudmila_88@list.ru
Full text PDF
Abstract
Description of chemical characteristics and toxicity testing of whole sediment and elutriate have been performed with 35 samples taken during the monitoring of rivers in the Middle Volga region (Tatarstan, Russia) in 2013. The locations analyzed are sites associated with agriculture, forestry, and petroleum hydrocarbons (oil) production. The toxicity tests include: (1) Chlorella vulgaris (algal) elutriate test, (2) Paramecium caudatum (ciliate) elutriate test, (3) Daphnia magna (cladoceran) whole sediment toxicity test, and (4) Heterocypris incongruens (ostracod) whole sediment toxicity test. The concentrations of metals in 43% of sediment samples have been found to exceed probable effect concentration sediment quality guidelines (SQGs). However, the concentrations of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides have turned out to be below SQGs in most sites. The correlation analysis has shown metal toxicity to daphnid reproduction and ostracod growth (R2 = 0.34–0.64) and ammonia (R2 = 0.49–0.54). A higher percentage of samples have shown toxicity in the whole sediment tests (86%) compared to the elutriate tests (54%). A total of 91% of samples have demonstrated toxicity for at least one species. Toxicity has been most frequently observed for daphnid reproduction (83% of samples) and ostracod growth (56% of samples) compared to daphnid (23%) survival, ostracod (11%) survival, and ciliate reproduction (54%) or algal growth (54%). The most polluted sediments have been registered in the area of oil production. The comparison of toxicity of the samples from different types of areas has indicated that 100% of samples from the oil production area, 94% of samples from the agricultural area, and 50% of samples from the forest area were toxic to at least one test organism.
Keywords: sediments, toxicity assessment, Chlorella vulgaris, Paramecium caudatum, Daphnia magna, Heterocypris incongruens, heavy metals, petroleum hydrocarbons, Middle Volga region
Acknowledgements. We would like to thank Dr. Christopher G. Ingersoll for his help in analysis of the data and interpretation of the results, Marcia K. Nelson for assisting us in preparing drafts of the English versions.
The work was performed as part of the state program for increasing the competitiveness of Kazan Federal University among the world's leading centers of sciences and education.
References
- Salomons W., Brils J. (Eds.) Contaminated Sediments in European River Basins. SedNet Final Summary Report, 2004. 80 p. Available at: http://sednet.org/wp-content/uploads/ 2016/03/Sednet_booklet_final_2.pdf.
- Teuchies J., Bervoets L., Cox T.J.C., Meire P., de Deckere E. The effect of waste water treatment on river metal concentrations: Removal or enrichment. J. Soils Sediments, 2011, vol. 11, no. 2, pp. 364–372. doi: 10.1007/s11368-010-0321-4.
- de Deckere E., De Cooman W., Leloup V., Meire P., Schmitt C., Ohe P. Development of sediment quality guidelines for freshwater ecosystems. J. Soils Sediments, 2011, vol. 11, no. 3, pp. 504–517. doi: 10.1007/s11368-010-0328-x.
- Ward D.J., Perez-Landa V., Spadaro D.A., Simpson S.L., Jolley D.F. An assessment of three harpacticoid copepod species for use in ecotoxicological testing. Arch. Environ. Contam. Toxicol., 2011, vol. 61, no. 3, pp. 414–425. doi: 10.1007/s00244-011-9646-2.
- Ho K.T., Burgess R.M. What's causing toxicity in sediments? Results of 20 years of toxicity identification and evaluations. Environ. Toxicol. Chem., 2013, vol. 32, no. 11, pp. 2424–2432. doi: 10.1002/etc.2359.
- Simpson S., Batley G., Chariton A., Stauber J.L., King C.K., Chapman J.C. Handbook for Sediment Quality Assessment. Canberra: Environmental Trust, 2005. 126 p. Available at: http://www.clw.csiro.au/cecr/sedimenthandbook.
- Hagopian-Schlekat T., Chandler G., Shaw T. Acute toxicity of five sediment-associated metals individually and in a mixture to the estuariane meiobenthic harpacticoid copepod Amphiascus tenuiremis. Mar. Environ. Res., 2001, vol. 51, no. 3, pp. 247–264.
- Adams M.S., Stauber J.L. Development of a whole-sediment toxicity test using a benthic marine microalga. Environ. Toxicol. Chem., 2004, vol. 23, no. 8, pp. 1957–1968. doi: 10.1897/03-232.
- Schipper C.A., Dubbeldam M., Feist S.W., Rietjens I.M.C.M., Murk A.T. Cultivation of the heart urchin Echinocardium cordatum and validation of it use in marine toxicity testing for environmental risk assessment. J. Exp. Mar. Biol. Ecol., 2008, vol. 364, no. 1, pp. 11–18. doi: 10.1016/j.jembe.2008.06.014.
- Scarlett A., Rowland S.J., Canty M., Smith E.L., Galloway T.S. Method for assessing the chronic toxicity of marine and estuariane sediment-associated contaminants using the amphipod Corophium volutator. Mar. Environ. Res., 2007, vol. 63, no. 5, pp. 457–470. doi: 10.1016/j.marenvres.2006.12.006.
- van den Heuvel-Greve M., Postma J., Jol J., Kooman H., Dubbeldam M., Schipper C., Kater B. A chronic bioassay with the estuarine amphipod Corophium volutator: Test method description and confounding factors. Chemosphere, 2007, vol. 66, no. 7, pp. 1301–1309. doi: 10.1016/j.chemosphere.2006.07.022.
- Mann R.M., Hyne R.V., Spadaro D.A., Simpson S.L. Development and application of a rapid amphipod reproduction test for sediment-quality assessment. Environ. Toxicol. Chem., 2009, vol. 28, no. 6, pp. 1244–1254. doi: 10.1897/08-346.1.
- Ingersoll C.G., Steevens J.A., MacDonald D.D. (Eds.) Evaluation of Toxicity to the Amphipod, Hyalella azteca, and to the Midge, Chironomus dilutus; and Bioaccumulation by the Oligochaete, Lumbriculus variegatus, with Exposure to PCB-Contaminated Sediments from Anniston, Alabama. Scientific Investigations Report 2013–5125. U.S. Geological Survey, 2014. 136 p. Available at: http://pubs.usgs.gov/sir/2013/5125/pdf/sir2013-5125.pdf.
- Chial B.Z., Persoone G. Cyst-based toxicity tests XIV–application of the ostracod solid-phase microbiotest for toxicity monitoring of river sediments in Flanders (Belgium). Environ. Toxicol., 2002, vol. 17, no. 6, pp. 533–537. doi: 10.1002/tox.10087.
- Chial B.Z., Persoone G., Blaise C. Cyst-based toxicity XVI-sensitivity comparison of the soil phase Heterocypris incongruens microbiotest with the Hyalella azteca and Chironomus riparius contact assays on freshwater sediments from Peninsula Harbour (Ontario, Canada). Chemosphere, 2003, vol. 52, no. 1, pp. 95–101. doi: 10.1016/S0045-6535(03)00186-3.
- Chial B.Z., Persoone G., Blaise C. Cyst-based toxicity tests. XVIII. Application of Ostracodtoxkit microbiotest in a bioremediation project of oil-contaminated sediments: Sensitivity comparison with Hyalella azteca solid-phase assay. Environ. Toxicol., 2003, vol. 18, no. 5, pp. 279–283. doi: 10.1002/tox.10125.
- Feiler U., Ahlf W., Höss S., Hollert H., Neumann-Hensel H., Meller M., Weber J., Heininger P. The SEKT joint research project: Definition of reference conditions, control sediments and toxicity thresholds for limnic sediment contact tests. Environ. Sci. Pollut. Res., 2005, vol. 12, no. 5, pp. 257–258. doi: 10.1065/espr2005.08.003.
- Manzo S., De Nicola F., De Luca Picione F., Maisto G., Alfani A. Assessment of the effects of soil PAH accumulation by a battery of ecotoxicological tests. Chemosphere, 2008, vol. 71, no. 10, pp. 1937–1944. doi: 10.1016/j.chemosphere.2007.12.026.
- Palma P., Ledo L., Soares S., Barbosa I.R., Alvarenga P. Integrated environmental assessment of freshwater sediments: Achemical and ecotoxicological approach at the Alqueva reservoir. Environ. Geochem. Health, 2014, vol. 36, no. 2, pp. 209–223. doi: 10.1007/s10653-013-9559-2.
- ISO 18287:2006. Soil quality – determination of polycyclic aromatic hydrocarbons (PAH) – gas chromatographic method with mass spectrometric detection (GC-MS). Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=33387.
- USEPA Method 1699: Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS. Washington, DC, U. S. Environ. Prot. Agency, 2007. Available at: http://www.epa.gov/sites/production/files/2015-10/documents/method_1699_2007.pdf.
- ASTM D4698-92(2013). Standard Practice for Total Digestion of Sediment Samples for Chemical Analysis of Various Metals. West Conshohocken, PA, ASTM Int., 2013. Available at: http://www.astm.org/Standards/D4698.htm.
- De Deckere E., De Cooman W., Florus M., Devroede-Vanderlinden M.P. (Eds.) A Manual for the Assessment of Sediments in Flanders with the Triad Approach. Ministry of the Flemish Community in Collaboration with the Flemish Environmental Agency. Brussels, Belguim: Ministry of the Flemish Community, 2000, 112 p.
- Federal Environmental Regulatory Document (FERD) 14.1:2:4.10-2004. Toxicological methods of analysis. Procedure for determining the toxicity of potable, natural, and wastewaters, aqueous extracts from soils, wastewater precipitates, and industrial and household wastes from the change in the optical density of chlorella alga culture (Chlorella vulgaris Beijer). Moscow, 2004. 36 p. Available at: http://base.consultant.ru/cons/cgi/ online.cgi?req=doc;base=EXP;n=580474. (In Russian)
- Temporal Handbook for Development Freshwater Sediment Quality Guidance (Based on Oil Products). Moscow, 2002. Available at: http://ohranatruda.ru/ot_biblio/normativ/ data_normativ/48/48871/index.php. (In Russian)
- ASTM E1391-03(2014). Standard Guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing and for Selection of Samplers Used to Collect Benthic Invertebrates. West Conshohocken, PA, ASTM Int., 2014. Available at: http://www.astm.org/Standards/E1391.htm.
- ISO 8692:2012. Water quality – fresh water algal growth inhibition test with unicellular green algae. Available at: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_ detail.htm?csnumber=54150.
- Federal Register (FR) 1.39.2007.03222. Method to determine the toxicity of water and aqueous extracts from soils, wastewater precipitates, and wastes by the mortality and changes in the fertility of daphnids. Moscow, 2007. Available at: http://www.koshcheev.ru/wp-content/uploads/2012/07/Petrik-FR-1-39-2007-03222.pdf. (In Russian)
- ASTM E1193-97(2012). Standard Guide for Conducting Daphnia magna Life-Cycle Toxicity Tests. West Conshohocken, PA, ASTM Int., 2012. Available at: http://www.astm.org/Standards/E1193.htm.
- ISO 14371:2012. Water quality – determination of fresh water sediment toxicity to Heterocypris incongruens (Crustacea, Ostracoda). Available at: http://www.iso.org/iso/ iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=54612.
- USEPA. National Recommended Water Quality Criteria, 2014. Available at: http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm#altable.
- MacDonald D.D., Ingersoll C.G., Berger T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol., 2000, vol. 39, no. 1, pp. 20–31.
- Stepanova N.Yu., Latypova T.R., Latypova V.Z. Ecologically based sediment quality criteria of the oil content for freshwater ecosystems on example of Kuibishev water reservoir. Neft. Khoz., 2015, vol. 3, pp. 106–109. (In Russian)
- Haring H.J., Smith M.E., Lazorchak J.M., Crocker P.A., Euresti A., Wratschko M.C., Schaub M.C. Comparison of bulk sediment and sediment elutriate toxicity testing methods. Arch. Environ. Contam. Toxicol., 2010, vol. 58, no. 3, pp. 676–683. doi: 10.1007/s00244-009-9447-z.
- Besser J.M., Brumbaugh W.G., Ingersoll C.G., Ivey C.D., Kunz J.L., Kemble N.E., Schlekat C.E., Garman E.R. Chronic toxicity of nickel-spiked freshwater sediments: Variation in toxicity among eight invertebrate taxa and eight sediments. Environ. Toxicol. Chem., 2013, vol. 32, no. 11, pp. 2495–2506. doi: 10.1002/etc.2271.
- Ingersoll C.G., MacDonald D.D., Brumbaugh W.G., Johnson B.T., Kemble N.E., Kunz J.L., May T.W., Wang N., Smith J.R., Sparks D.W., Ireland D.S. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in Northwestern Indiana, USA. Arch. Environ. Contam. Toxicol., 2002, vol. 43, no. 2, pp. 156–167. doi: 10.1007/s00244-001-0051-0.
- Loya Y., Rinkevich B. Effects of oil pollution on coral reef communities. Mar. Ecol.: Prog. Ser., 1980, vol. 3, pp. 167–180.
- Cao X., Xiong Yi., Lund J. The effect of micro-algae characteristics on the bioremediation rate of Deepwater Horizon crude oil. J. Emerging Invest., 2013. Available at: http://www.emerginginvestigators.org/wp-content/uploads/2013/06/Cao-2013-Deepwater-Crude-Oil.pdf.
- Ilangovan K., Cañizares-Villanueva R.O., González M.S, Voltolina D. Effect of cadmium and zinc on respiration and photosynthesis in suspended and immobilized cultures of Chlorella vulgaris and Scenedesmus acutus. Bull. Environ. Contam. Toxicol., 1998, vol. 60, no. 6, pp. 936–943. doi: 10.1007/s001289900718.
- Franklin N.M., Stauber J.L., Lim R.P., Petocz P. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp): The effect of interactions between copper, cadmium and zinc on metal cell binding and uptake. Environ. Toxicol. Chem., 2002, vol. 21, no. 11, pp. 2412–2422. doi: 10.1002/etc.5620211121.
- Plekhanov S.E., Chemeris Iu.K. Early toxic effect of zinc, cobalt, and cadmium on photosynthetic activity of green alga Chlorella pyrenoidosa Chick S-39. Izv. Akad. Nauk, Ser. Biol., 2003, vol. 5, pp. 610–616.
- Kudłak B., Wolska L., Namieśnik J. Determination of EC50 toxicity data of selected heavy metals toward Heterocypris incongruens and their comparison to “direct-contact” and microbiotests. Environ. Monit. Assess., 2011, vol. 174, pp. 509–516. doi: 10.1007/s10661-010-1474-8.
- MacDonald D.D., Ingersoll C.G. Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater, Estuarine, and Marine Ecosystems in British Columbia. Vol. II: Design and Implementation of Sediment Quality Investigations in Freshwater Ecosystems. Victoria, British Columbia, 2003.
- Tuikka A.I., Schmitt C., Höss S, Bandow N., von der Ohe P.C., de Zwart D, de Deckere E., Streck G., Mothes S., van Hattum B., Kocan A., Brix R., Brack W., Barceló D., Sormunen A.J., Kukkonen J.V.K. Toxicity assessment of sediments from three European River basins using a sediment contact test battery. Ecotoxicol. Environ. Saf., 2011, vol. 74, no. 1, pp. 123–131. doi: 10.1016/j.ecoenv.2010.08.038.
- USEPA. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc), Washington, DC, U. S. Environ. Prot. Agency, 2005. Available at: https://clu-in.org/conf/tio/porewater1/resources/EPA-ESB-Procedures-metals.pdf.
- USEPA. Sediment Toxicity Identification Evaluation (TIE). Washington, DC, U. S. Environ. Prot. Agency, 2007. Available at: http://www.solutions-project.eu/wp-content/uploads/ 2014/03/U.S.-EPA-2007.pdf.
For citation: Stepanova N.Yu., Latypova T.R., Novikova L.V. Comparison of toxicity of sediments from rivers with different levels of anthropogenic load (Middle Volga region, Russia) based on elutriate and whole sediment tests. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 3, pp. 416–439.

The content is available under the license Creative Commons Attribution 4.0 License.