R.Kh. Ayupov*, N.I. Akberova**
Kazan Federal University, Kazan, 420008 Russia
E-mail: *aurusta@mail.ru, **nakberova@mail.ru
Full text PDF
Abstract
SaHPF (Staphylococcus aureus hibernation promoting factor) is the ribosome inactivating protein of the bacterium Staphylococcus aureus. The structure of this protein has been predicted using bioinformatics methods and represented by two domains and a hinge between them. The comparison of the primary sequence of SaHPF protein with the sequences of known structures of proteins determined by NMR and X-ray has revealed homology only for the first domain. At the same time, regions of homology to SaHPF protein entire sequence have been detected when it was compared to the Uniprot sequences. The search for homology for each individual domain has revealed 10 proteins homologous to the first domain and 3 homologs for the second domain; none of these homologous proteins have a hinge in their structure. The structural comparison of these homologues proteins with both domains of SaHPF has shown that the SaHPF first and second domain structures are accurately superimposed in the similar structural regions of homologous proteins. At least five of the identified proteins homologous to SaHPF are structurally related to the ribosome, which is an indirect indication of the quality of the SaHPF domain structure prediction and a sufficient background for the simulation of its behavior by equilibrium molecular dynamics. The analysis of SaHPF protein MD trajectories using principle components and normal modes methods has identified the characteristic collective motions of residues in the hinges regions between the β-sheet in both domains as well as in the hinge between the domains, which can be functionally important for SaHPF protein interaction with the ribosome.
Keywords: SaHPF, protein structure prediction, sequence homology, homology of structures, molecular dynamics
Acknowledgments. This study was funded by the subsidy allocated to Kazan Federal University as part of the state program for increasing its competitiveness among the world's leading centers of science and education.
The work was supported by the Russian Foundation for Basic Research (project no. 16-34-60001_mol_a_dk).
Figure Captions
Fig. 1. Sequence alignment of SaHPF protein domains with sequences of 1IMU and 3LYV proteins: I – for the first domain, II – for the second domain.
Fig. 2. Superposition of SaHPF protein on homologous protein structures: I – for the first domain, II – the second domain. Different colors identify different proteins.
Fig. 3. RMSD (a) and RMSF (b) plots of SaHPF protein; the most moving sections of the polypeptide chain are highlighted.
Fig. 4. Proteins structure visualization: left – the predicted model of SaHPF protein, indicating the distance between the domains; right – the model of HPF and RMF protein in the ribosome structure [3], with an indication of the distance between them.
References
- Melzer M., Welch C. Thirty-day mortality in UK patients with community-onset and hospital-acquired meticillin-susceptible Staphylococcus aureus bacteraemia. J. Hosp. Infect., 2013, vol. 84, no. 2, pp. 143–150. doi: 10.1016/j.jhin.2012.12.013.
- Miller L.G., Eells S.J., Taylor A.R., David M.Z., Ortiz N., Zychowski D., Kumar N., Cruz D., Boyle-Vavra S., Daum R.S. Staphylococcus aureus colonization among household contacts of patients with skin infections: risk factors, strain discordance, and complex ecology. Clin. Infect. Dis., 2012, vol. 54, no. 11, pp. 1523–1535. doi: 10.1093/cid/cis213.
- Polikanov Y.S., Blaha G.M., Steitz T.A. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science, 2012, vol. 336, no. 6083, pp. 915–918. doi: 10.1126/science.1218538.
- Ueta M., Wada Ch., Wada A. Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF. Genes Cells, 2010, vol. 15, no. 1, pp. 43–58. doi: 10.1111/j.1365-2443.2009.01364.x.
- Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat. Methods, 2015, vol. 12, no. 1, pp. 7–8. doi: 10.1038/nmeth.3213.
- Raman S., Vernon R., Thompson J., Tyka M., Sadreyev R., Pei J., Kim D., Kellogg E., DiMaio F., Lange O., Kinch L., Sheffler W., Kim B-H., Das R., Grishin N.V., Baker D. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins, 2009, vol. 77, no. 9, pp. 89–99. doi: 10.1002/prot.22540.
- Xu D., Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins, 2012, vol. 80, no. 7, pp. 1715–1735. doi: 10.1002/prot.24065.
- Ayupov R.K., Akberova N.I. Prediction of the three-dimensional structure of the protein SaHPF and analysis of its molecular dynamics. Int. J. Pharm. Technol., 2016, vol. 8, no. 2, pp. 14548–14557.
- Blast: Basic Local Alignment Search Tool. Available at: http://blast.ncbi.nlm.nih.gov/Blast.cgi
- Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725–2729. doi: 10.1093/molbev/mst197.
- Clustal Omega. Available at: http://www.ebi.ac.uk/Tools/msa/clustalo
- Ayupov R.K., Akberova N.I. Molecular dynamics of the pyridoxine derivative in the acetylcholinesterase active cavity. Res. J. Pharm. Biol. Chem. Sci., 2015, vol. 6, no. 6. pp. 1717–1722.
- Ayupov R.K., Akberova N.I. The ligand behavior on the surface of acetylcholinesterase. Res. J. Pharm. Biol. Chem. Sci., 2015, vol. 6, no. 4, pp. 2202–2206.
- Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot Ch., Skeel R.D., Kale L., Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, vol. 26, no. 16, pp. 1781–1802.
- Salomon-Ferrer R., Case D.A., Walker R.C. An overview of the Amber biomolecular simulation package. WIREs Comput. Mol. Sci., 2013, vol. 3, no. 2, pp. 198–210. doi: 10.1002/wcms.1121.
- Best R.B., Zhu X., Shim J., Lopes P.E.M., Mittal J., Feig M., MacKerell A.D. Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi1 and chi2 dihedral angles. J. Chem. Theory Comput., 2012, vol. 8, no. 9, pp. 3257–3273. doi: 10.1021/ct300400x.
- Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics, 1996, vol. 14, no. 1, pp. 33–38. doi: 10.1016/0263-7855(96)00018-5.
- Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, vol. 25, no. 13, pp. 1605–1612.
- Usachev K.S., Efimov S.V., Kolosova O.A., Filippov A.V., Klochkov V.V. High-resolution NMR structure of the antimicrobial peptide protegrin-2 in the presence of DPC micelles. J. Biomol. NMR, – 2015, vol. 61, nos. 3–4, pp. 227–234. doi: 10.1007/s10858-014-9885-4.
- Sato A., Watanabe T., Maki Y., Ueta M., Yoshida H., Ito Y., Wada A., Mishima M. Solution structure of the E. coli ribosome hibernation promoting factor HPF: Implications for the relationship between structure and function. Biochem. Biophys. Res. Commun., 2009, vol. 389, no. 4, pp. 580–585. doi: 10.1016/j.bbrc.2009.09.022.
- Rak A., Kalinin A., Shcherbakov D., Bayer P. Solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli. Biochem. Biophys. Res. Commun., 2002, vol. 299, no. 5, pp. 710–714.
- Vila-Sanjurjo A., Schuwirth B.S., Hau C.W., Cate J.H. Structural basis for the control of translation initiation during stress. Nat. Struct. Mol. Biol., 2004, vol. 11, no. 11, pp. 1054–1059.
- De Bari H., Berry E.A. Structure of Vibrio cholerae ribosome hibernation promoting factor. Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 2013, vol. 69, pt. 3, pp. 228–236. doi: 10.1107/S1744309113000961.
- Ye K., Serganov A., Hu W., Garber M., Patel D.J. Ribosome-associated factor Y adopts a fold resembling a double-stranded RNA binding domain scaffold. Eur. J. Biochem., 2002, vol. 269, no. 21, pp. 5182–5191.
- Kawazoe M., Takemoto C., Kaminishi T., Tatsuguchi A., Saito Y., Shirouzu M., Yokoyama S. Crystal structure of Thermus thermophilus protein Y N-terminal domain. 2007. Available at: http://www.rcsb.org/pdb/explore/explore.do?pdbId=2YWQ. doi: 10.2210/pdb2ywq/pdb.
- Parsons L., Eisenstein E., Orban J. Solution structure of HI0257, a bacterial ribosome binding protein. Biochemistry, 2001, vol. 40, no. 37, pp. 10979–10986.
- Franklin M.C., Cheung J., Rudolph M.J., Burshteyn F., Cassidy M., Gary E., Hillerich B., Yao Z.K., Carlier P.R., Totrov M., Love J.D. Structural genomics for drug design against the pathogen Coxiella burnetii. Proteins, 2015, vol. 83, no. 12, pp. 2124–2136. doi: 10.1002/prot.24841.
- Seetharaman J., Su M., Wang D., Janjua H., Cunningham K., Owens L., Xiao R., Liu J., Baran M.C., Acton T.B., Rost B., Montelione G.T., Hunt J.F., Tong L. Crystal structure of Lmo2511 protein from Listeria monocytogenes, northeast structural genomics consortium target LkR84A. 2009. Available at: http://www.rcsb.org/pdb/explore/explore.do?pdbId=3K2T. doi: 10.2210/pdb3k2t/pdb.
- Seetharaman J., Neely H., Forouhar F., Wang D., Janjua H., Cunningham K., Owens L., Xiao R., Liu J., Baran M.C., Acton T.B., Montelione G.T., Hunt J.F., Tong L. Crystal structure of a domain of ribosome-associated factor Y from streptococcus pyogenes serotype M6. Northeast Structural Genomics Consortium target id DR64A. 2010. Available at: http://www.rcsb.org/pdb/explore/ explore.do?pdbId=3LYV. doi: 10.2210/pdb3lyv/pdb.
- Seetharaman J., Neely H., Wang D., Janjua H., Cunningham K., Owens L., Xiao R., Liu J., Baran M.C., Acton T.B., Rost B., Montelione G.T., Hunt J.F., Tong L. Crystal structure of Ribosome-associated protein Y (PSrp-1) from Clostridium acetobutylicum. Northeast Structural Genomics Consortium target id CaR123A. 2009. Available at: http://www.rcsb.org/pdb/explore/explore.do?pdbId=3KA5. doi: 10.2210/pdb3ka5/pdb.
For citation: Ayupov R.Kh., Akberova N.I. Analysis of the structure of SaHPF Staphylococcus aureus protein. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 3, pp. 327–337. (In Russian)

The content is available under the license Creative Commons Attribution 4.0 License.