L.S. Chernova*, I.S. Sharafutdinov**, A.R. Kayumov***
Kazan Federal University, Kazan, 420008 Russia
E-mail: *lsch-888@live.com, **irwad@yandex.ru, *** kairatr@yandex.ru
Received December 14, 2016
Full text PDF
Abstract
HtrA (high-temperature requirement A) are the heat shock-induced serine proteases widely spread in pro- and eukaryotic cells. These enzymes control the quality of intracellular proteins by hydrolysis of denatured proteins, thereby protecting cells from various stresses. In many pathogenic bacteria, they are factors of pathogenicity. Thus, in Streptococcus mutans, HtrA participates in quorum-dependent processes and biofilm formation via digestion of the pheromone ComX. In this work, Bacillus subtilis HtrA Hy with an overexpressionof the HtrA protein has been obtained and its physiological features have been characterized. The overexpression of HtrA in Bacillus subtilis cells increases cell viability at high temperature conditions, ethanol and salt stresses. In addition, B. subtilis HtrA Hy is characterized by the intensive biofilm formation with an increased synthesis of extracellular matrix. Congo red staining of the co lonyhas revealed that HtrA overexpression induces the increased production of amyloid-like proteins. Moreover, these cells exhibited intensive swarming in contrast to the wild-type strain. The overexpression of the HtrA protease results in an increased level of expression of the eps and yqxM genes encoding the components of the biofilm matrix. This fact is probably related to the effect of the enzyme on regulatory processes, possibly due to the hydrolysis of signal regulatory peptides.
Keywords: protease HtrA, biofilm formation, viability, temperature stress, protease hyperproduction
Acknowledgments. The study was supported by the Russian Science Foundation (project no. 15-14-00046).
Figure Captions
Fig. 1. The dynamics of growth of B. subtilis strains at 37 ?С (a) and at 49 ?С (b). Key: wt – B. subtilis wt, hy – B. subtilis HyHtrA.
Fig. 2. Assessment of the viability in B. subtilis cultivated under the conditions of temperature shock using differential fluorescent staining (a) and CFU counting (b). Key: wt – B. subtilis wt, hy – B. subtilis HyHtrA.
Fig. 3. The dynamics of growth of B. subtilis strains after 5% (a) and 7.5% (b) ethanol exposure and 1 M NaCl (c). Key: wt – B. subtilis wt, hy – B. subtilis HyHtrA.
Fig. 4. Quantification of biofilm formation by B. subtilis wt, B. subtilis HyHtrA: a – with the help of Congo red staining, b – a cross section of the colony, c – depending on the optical density OD550 by crystal violet staining intensity. Key: wt – B. subtilis wt, hy – B. subtilis HyHtrA.
References
- Clausen T., Kaiser M., Huber R., Ehrmann M. HTRA proteases: Regulated proteolysis in protein quality control. Nat. Rev. Mol. Cell Biol., 2011, vol. 12, no. 3, pp. 152–162. doi: 10.1038/nrm3065.
- Skórko-Glonek J., Wawrzynów A., Krzewski K., Kurpierz K., Lipińska B. Site-directed mutagenesis of the HtrA (DegP) serine protease, whose proteolytic activity is indispensable for Escherichia coli survival at elevated temperatures. Gene, 1995, vol. 163, no. 1, pp. 47–52. doi: 10.1016/0378-1119(95)00406-V.
- Seol J.H., Woo S.K., Jung E.M., Yoo S.J., Lee C.S., Kim K.J., Tanaka K., Ichihara A., Ha D.B., Chung C.H. Protease Do is essential for survival of Escherichia coli at high temperatures: Its identity with the htrA gene product. Biochem. Biophys. Res. Commun., 1991, vol. 176, no. 2, pp. 730–736. doi: 10.1016/S0006-291X(05)80245-1.
- Gottesman S. Proteases and their targets in Escherichia coli. Annu. Rev. Genet., 1996, vol. 30, pp. 465–506. doi: 10.1146/annurev.genet.30.1.465.
- Gottesman S., Wickner S., Maurizi M.R. Protein quality control: Triage by chaperones and proteases. Genes Dev., 1997, vol. 11, no. 7, pp. 815–823. doi: 10.1101/gad.11.7.815.
- Visick J.E., Clarke S. Repair, refold, recycle: How bacteria can deal with spontaneous and environmental damage to proteins. Mol. Microbiol., 1995, vol. 16, no. 6, pp. 835–845. doi: 10.1111/j.1365-2958.1995.tb02311.x.
- Krojer T., Sawa J., Schäfer E., Saibil H.R., Ehrmann M., Clausen T. Structural basis for the regulated protease and chaperone function of DegP. Nature, 2008, vol. 453, no. 7197, pp. 885–890. doi: 10.1038/nature07004.
- Skorko-Glonek J., Zurawa-Janicka D., Koper T., Jarzab M., Figaj D., Glaza P., Lipinska B. HtrA protease family as therapeutic targets. Curr. Pharm. Des., 2013, vol. 19, no. 6, pp. 977–1009. doi: 10.2174/1381612811319060003.
- Hyyryläinen H.-L., Bolhuis A., Darmon E., Muukkonen L., Koski P., Vitikainen M., Sarvas M., Prágai Z., Bron S., van Dijl J.M., Kontinen V.P. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol. Microbiol., 2001, vol. 41, no. 5, pp. 1159–1172. doi: 10.1046/j.1365-2958.2001.02576.x.
- Coleman H.R., Chan C.C., Ferris F.L. III, Chew E.Y. Age-related macular degeneration. Lancet, 2008, vol. 372, no. 9652, pp. 1835–1845. doi: 10.1016/S0140-6736(08)61759-6.
- Vande Walle L., Lamkanfi M., Vandenabeele P. The mitochondrial serine protease HtrA2/Omi: An overview. Cell Death Differ., 2008, vol. 15, no. 3, pp. 453–460. doi: 10.1038/sj.cdd.4402291.
- Chien J., Ota T., Aletti G., Shridhar R., Boccellino M., Quagliuolo L., Baldi A., Shridhar V. Serine protease HtrA1 associates with microtubules and inhibits cell migration. Mol. Cell. Biol., 2009, vol. 29, no. 15, pp. 4177–4187. doi: 10.1128/MCB.00035-09.
- Pallen M.J., Wren B.W. The HtrA family of serine proteases. Mol. Microbiol., 1997, vol. 26, no. 2, pp. 209–221. doi: 10.1046/j.1365-2958.1997.5601928.x.
- Sambrook J.E., Fritsch F., Maniatis T. Molecular Cloning: A Laboratory Manual: 3 vols. New York, Cold Spring Harbor Lab. Press, 1989. 1626 p.
- Kayumov A.R., Khakimullina E.N., Sharafutdinov I.S., Trizna E.Y., Latypova L.Z., Lien H.T., Margulis A.B., Bogachev M.I., Kurbangalieva A.R. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones. J. Antibiot. (Tokyo), 2015, vol. 68, no. 5, pp. 297–301. doi: 10.1038/ja.2014.143.
- Kayumov A.R., Balaban N.P., Mardanova A.М., Kostrov S.V., Sharipova M.R. Biosynthesis of the subtilisin-like serine proteinase of Bacillus intermedius under salt stress conditions. Microbiology, 2006, vol. 75, no. 5, pp. 557–562. doi: 10.1134/S0026261706050043.
- O'Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol., 1998, vol. 28, no. 3, pp. 449–461. doi: 10.1046/j.1365-2958.1998.00797.x.
- Noone D., Howell A., Devine K.M. Expression of ykdA, encoding a Bacillus subtilis homologue of HtrA, is heat shock inducible and negatively autoregulate. J. Bacteriol., 2000, vol. 182, no. 6, pp. 1592–1599. doi: 10.1128/JB.182.6.1592-1599.2000.
- Noone D., Howell A., Collery R., Devine K.M. YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J. Bacteriol., 2001, vol. 183, no. 2, pp. 654–663. doi: 10.1128/JB.183.2.654-663.2001.
- Clausen T., Southan C., Ehrmann M. The HtrA family of proteases. Implications for protein composition and cell fate. Mol. Cell., 2002, vol. 10, no. 3, pp. 443–455. doi: 10.1016/S1097-2765(02)00658-5.
- Peterson S.N., Sung C.K., Cline R., Desai B.V., Snesrud E.C., Luo P., Walling J., Li H., Mintz M., Tsegaye G., Burr P.C., Do Y., Ahn S., Gilbert J., Fleischmann R.D., Morrison D.A. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol., 2004, vol. 51, no. 4, pp. 1051–1070. doi: 10.1046/j.1365-2958.2003.03907.x.
- Sebert M.E., Palmer L.M., Rosenberg M., Weiser J.N. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect. Immun., 2002, vol. 70, no. 8, pp. 4059–4067. doi: 10.1128/IAI.70.8.4059-4067.2002.
- Sharafutdinov I., Shigapova Z., Baltin M., Akhmetov N., Bogachev M., Kayumov A. HtrA protease from Bacillus subtilis suppresses the bacterial fouling of the rat skin injuries. J. BioNanoSci., 2016, vol. 6, no. 4, pp. 564–567. doi 10.1007/s12668-016-0281-2.
- Romero D., Aguilar C., Losick R., Kolter R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 5, pp. 2230–2234. doi: 10.1073/pnas.0910560107.
- Biswas S., Biswas I. Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect. Immun., 2005, vol. 73, no. 10, pp. 6923–6934. doi: 10.1128/IAI.73.10.6923-6934.2005.
For citation: Chernova L.S., Sharafutdinov I.S., Kayumov A.R. HtrA protein hyperproduction increases the viability of Bacillus subtilis cells under the stress conditions and stimulates biofilm formation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 2, pp. 262–271. (In Russian)
The content is available under the license Creative Commons Attribution 4.0 License.