Научные исследования кафедры ведутся по следующим направлениям:
Сотрудники кафедры публикуются в престижных российских и международных изданиях, участвуют в различных российских и международных конференциях. Наряду с сотрудниками, в научной деятельности кафедры задействованы аспиранты, студенты магистратуры и бакалавриата.
Избранные публикации
Заботин Я.И., Кораблев А.И., Хабибуллин Р. Ф. О минимизации квазивыпуклых функционалов // Изв. вузов. Матем., 1972, № 10, - с. 27–33.
Заботин Я.И., Кораблев А.И., Хабибуллин Р.Ф. Условия экстремума функционала при наличии ограничений, Кибернетика, №6, 1973,6 с.
Беговатов Е.А., Кашина О.А. Геоинформационная система «Археология Среднего Поволжья и Предуралья» и её приложения // Археология и геоинформатика. - М.:ИА РАН,2012.- С.9-10.
Bochkarev A.V., Lerner E. Yu., Shevlyakova A. V. Strong power and subexponential laws for an ordered list of trajectories of a Markov chain. Electronic Journal of Linear Algebra: Vol. 27, Article 252, 2014
Chebakova V. Ju., Gaisin A. F. , Zheltukhin V. S. Solution of the problem of interaction between capacitive coupled radio-frequency discharge and a sample// IOP Conference Series: Materials Science and Engineering. – 2016. – V. 158, 012024
Gabidullina Z.R. A theorem on separability of a convex polyhedron from zero point of the space and its applications in optimization. Russian Math. (Iz. VUZ), 50: 12(2006), p.p. 18-23. Allerton Press
Gabidullina Z.R. A Theorem on Strict Separability of Convex Polyhedra and Its Applications in Optimization. Journal of Optimization Theory and Applications, ISSN 0022-3239 (print), Vol.148, Is. 3, 2011, p.p.550-570
Gabidullina Z.R., A Linear Separability Criterion for Sets of Euclidean Space//Journal of Optimization Theory and Applications. - 2013. - Vol.158, Is.1. - P.145-171.
Gabidullina Z.R., Necessary and sufficient conditions for emptiness of the cones of generalized support vectors//Optimization Letters. - 2015. - Vol.9, Is.4. - P.693-729.
V. B. Fofanov, R. M. Aleev, // Pattern Recognition and Image Analysis. - 2014. - Vol. 24, No. 3. - PP. 383-388.
V. B. Fofanov, A. N. Zhiznevskii // Pattern Recognition and Image Analysis. - 2012, Vol. 22, No. 2. - PP. 257-264.
I.V. Konnov, O. A. Kashina, E. Laitinen, Optimization of wireless networks performance: an approach based on a partial penalty method // International journal of circuits, systems and signal processing, Vol. 11, 2017, pp. 37 - 43
I.V. Konnov, O. A. Kashina, E. Laitinen. Partial Penalty Method for Flow Optimization in Wireless Networks // WSEAS Transactions on Communications, ISSN / E-ISSN: 1109-2742 / 2224-2864, Volume 15, 2016, Art. #40, pp. 363-368
Konnov I, Pinyagina O., Partial linearization method for network equilibrium problems with elastic demands//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - 2016. - Vol.9869 LNCS, Is.. - P.418-429
P. Kuptsov, E. Yu. Lerner, S. A. Mukhamedjanova, Flow polynomials as Feynman amplitudes and their $\alpha$-representation, Electron. J. Combin., 24 (2017), no.~1, paper 11, 19 pp.
Lerner E.Yu., Missarov M.D. P-adic Feynman and String Amplitudes // Commun. Math. Phys., V.121, N 1, 35-48, 1989.
Missarov M.D. Renormalization group and renormalization theory in p-adic and adelic scalar models // “Dynamical Systems and Statistical Mechanics”, Ya.G.Sinai (ed), Advances in Soviet Math., Amer. Math. Soc. Providence, R.I., V.3, 143-164, 1991.
Missarov M.D. Renormalization group solution of fermionic Dyson model // Asymptotic Combinatorics with Application to Mathematical Physics, V.A.Malyshev and A.M.Vershik (eds.), Kluwer Academic Publishers, Printed in Netherlands, p. 151-166, 2002.
Missarov M.D. P-Adic renormalization group solutions and the Euclidean renormalization group conjectures // P-Adic Numbers, Ultrametric Analysis and Applications.-2012.- V. 4, N. 2.-P. 109-114, Pleiades Publishing Ltd.
Missarov M.D. Functional Fourier transformation and renormalization group transformation in the bosonic field models // Theor. Math. Phys. , 2013, V. 174, N 2, p. 303-312
Missarov M.D., Shamsutdinov A.F. An algorithm for studying the renormalization group dynamics in the projective space // Proceedings of the Steklov Institute of Mathematics, -2014.-V. 285, Issue 1, pp 211-221, Pleiades Publishing , Springer
Missarov M.D., Shamsutdinov A.F. Dynamics of renormalization group in the lower half-plane of the coupling constants of the fermionic hierarchical model // Russian Mathematics (Iz. VUZ), V. 59, N 7, pp. 62-66, 2015
Pinyagina O., On a network equilibrium problem with mixed demand//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - 2016. - Vol.9869 LNCS, Is.. - P.578-583.
I. Ya. Zabotin, R. S. Yarullin. One Approach to Constructing Cutting Algorithms with Dropping of Cutting Planes // Russian Mathematics. – 2013. – No 3. – Pp. 60 – 64.
I. Ya. Zabotin and R. S. Yarullin. A Cutting-Plane Method Based on Epigraph Approximation with Discarding the Cutting Planes // Automation and Remote Control. – 2015. – Vol. 76. – No. 11. – Pp. 1966–1975.
I. Ya. Zabotin and R. S. Yarullin. A Cutting-Plane Method without Inclusions of Approximating Sets for Conditional Minimization // Lobachevskii Journal of Mathematics. – 2015. – Vol. 36. – № 2. – Pp. 132–138.
I. Ya. Zabotin, O.N. Shulgina, and R. S. Yarullin. Minimization Method with Approximation of Feasible Set and Epigraph of Objective Function // Russian Mathematics. – 2016. – Vol. 60, No 11. – Pp. 78 – 81.
I. Zabotin, O. Shulgina, and R. Yarullin. A Minimization Algorithm with Approximation of an Epigraph of the Objective Function and a Constraint Set // Proc. DOOR 2016, Vladivostok, Russia, September 19 – 23, 2016. CEUR-WS. 2016. – Vol. 1623. Pp. 321 – 324.
I. Zabotin, O. Shulgina, and R. Yarullin. A Minimization Method On The Basis of Embedding The Feasible Set and The Epigraph. // IOP conference Series: Materials Science and Engineering (MSE) – Vol. 158. – № 1. – 012098 (2016). – С. 1 - 6.
I. Zabotin, K. Kazaeva. One cutting plane algorithm using auxiliary functions. // IOP conference Series: Materials Science and Engineering (MSE) – Vol. 158. – № 1. – 012097 (2016). – С. 1 - 4.