Образование
Преподавание на кафедре прикладной математики ведется по следующим направлениям:
Специализация бакалавров и магистрантов проводится по профилю «Математическое моделирование». Кафедра поддерживает три компоненты математического моделирования: искусство построения математических моделей, изучение математических методов решения прикладных задач и освоение современных компьютерных технологий. Основное внимание уделяется фундаментальному математическому образованию и освоению современных технологий программирования, в том числе программированию для суперкомпьютеров.
Примерные темы выпускных квалификационных работ бакалавров и темы магистерских диссертаций:
О специализации "Математическое моделирование" Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта его "образом" – математической моделью – и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот "третий метод" познания, конструирования, проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях (преимущества теории). Технические, экологические, экономические и иные системы, изучаемые современной наукой, больше не поддаются исследованию (в нужной полноте и точности) обычными теоретическими методами. Прямой натурный эксперимент над ними долог, дорог, часто либо опасен, либо попросту невозможен, так как многие из этих систем существуют в "единственном экземпляре". Цена ошибок и просчетов в обращении с ними недопустимо высока. Поэтому математическое (шире – информационное) моделирование является неизбежной составляющей научно-технического прогресса. Сама постановка вопроса о математическом моделировании какого-либо объекта порождает четкий план действий. Его можно условно разбить на три этапа: модель – алгоритм – программа На первом этапе выбирается (или строится) "эквивалент" объекта, отражающий в математической форме важнейшие его свойства – законы, которым он подчиняется, связи, присущие составляющим его частям, и т. д. Математическая модель (или ее фрагменты) исследуется теоретическими методами, что позволяет получить важные предварительные знания об объекте. Второй этап – выбор (или разработка) алгоритма для реализации модели на компьютере. Модель представляется в форме, удобной для применения численных методов, определяется последовательность вычислительных и логических операций, которые нужно произвести, чтобы найти искомые величины с заданной точностью. Вычислительные алгоритмы должны не искажать основные свойства модели и, следовательно, исходного объекта, быть экономичными и адаптирующимися к особенностям решаемых задач и используемых компьютеров. На третьем этапе создаются программы, "переводящие" модель и алгоритм на доступный компьютеру язык. К ним также предъявляются требования экономичности и адаптивности. Их можно назвать "электронным" эквивалентом изучаемого объекта, уже пригодным для непосредственного испытания на "экспериментальной установке" – компьютере. Создав триаду "модель – алгоритм – программа", исследователь получает в руки универсальный, гибкий и недорогой инструмент, который вначале отлаживается, тестируется в "пробных" вычислительный экспериментах. После того как адекватность (достаточное соответствие) триады исходному объекту удостоверена, с моделью проводятся разнообразные и подробные "опыты", дающие все требуемые качественные и количественные свойства и характеристики объекта. Процесс моделирования сопровождается улучшением и уточнением, по мере необходимости, всех звеньев триады. |