Hansen V.L. Algebra and topology of Weierstrass polynomials // Expos. Math. – 1987. – V. 5. – P. 267–274.
Hansen V.L. A model for embedding finite coverings defined by principal bundles into bundules of manifolds // Topol. Its Appl. – 1988. – V. 28, No 1. – P. 1–9. – doi: 10.1016/0166-8641(88)90030-2.
Hansen V.L. The characteristic algebra of a polynomial covering map // Math. Scand. – 1989. – V. 64, No 1. – P. 219–225. – doi: 10.7146/math.scand.a-12254.
Hansen V.L., Petersen P. Groups, coverings and Galois theory // Can. J. Math. – 1991. – V. 43, No 6. – P. 1281–1293. – doi: 10.4153/CJM-1991-073-0.
Гумеров Р.Н. Многочлены Вейерштрасса и накрытия компактных групп // Сиб. матем. журн. – 2013. – Т. 54, № 2. – С. 320–324.
McCordM.C. Inverse limit sequences with covering maps // Trans. Am. Math. Soc. – 1965. – V. 114. – P. 197–209. – doi: 10.1090/S0002-9947-1965-0173237-0.
Bing R.H. A simple closed curve is the only homogeneous bounded plane continuum that contains an arc // Can. J. Math. – 1960. – V. 12. – P. 209–230. – doi: 10.4153/CJM-1960-018-x.
AartsJ.M., Fokkink R.J. The classification of solenoids // Proc. Am. Math. Soc. – 1991. – V. 111. – P. 1161–1163. – doi: 10.1090/S0002-9939-1991-1042260-7.
Богатый С.А., Фролкина О.Д. Классификация обобщенных соленоидов // Труды семинара по векторному и тензорному анализу с их приложениями к геометрии, механике и физике. – М.: Моск. гос. ун-т, 2005. – Вып. XXVI. – С. 31–59.
Zhou Y. Covering mappings on solenoids and their dynamical properties // Chin. Sci. Bull. – 2000. – V. 45, No 12. – P. 1066–1070. – doi: 10.1007/BF02887175.
KwapiszJ. Homotopy and dynamics for homeomorphisms of solenoids and Knaster continua // Fundam. Math. – 2001. – V. 168, No 3. – P. 251–278. – doi: 10.4064/fm168-3-3.
CharatonikJ.J., Covarrubias P.P. On covering mappings on solenoids // Proc. Am. Math. Soc. – 2002. – V. 130, No 7. – P. 2145–2154. – doi: 10.1090/S0002-9939-01-06296-7.
AartsJ.M., Fokkink R.J. Mappings on the dyadic solenoid // Commentat. Math. Univ. Carol. – 2003. – V. 44, No 4. – P. 697–699.
GumerovR.N. On finite-sheeted covering mappings onto solenoids. – 2003. – arXiv:math/0312288v1. – 8 p.
GumerovR.N. On finite-sheeted covering mappings onto solenoids // Proc. Am. Math. Soc. – 2005. – V. 133, No 9. – P. 2771–2778. – doi: 10.1090/S0002-9939-05-07792-0.
Jiang B., Wang S., Zheng Y. No embeddings of solenoids into surfaces // Proc. Am. Math. Soc. – 2008. – V. 136, No 10. – P. 3697–3700. – doi: 10.1090/S0002-9939-08-09340-4.
BogatyiS., Frolkina O. On multiplicity of maps // Topol. Its Appl. – 2012. – V. 159, No 7. – P. 1778–1786. – doi: 10.1016/j.topol.2011.09.042.
Boron´ski J.P., Sturm F. Finite-sheeted covering spaces and a near local homeomorphism property for pseudosolenoids // Topol. Its Appl. – 2014. – V. 161, No 1. – P. 235–242. – doi: 10.1016/j.topol.2013.10.024.
BrownloweN., Raeburn I. Two families of Exel–Larsen crossed products // J. Math. Anal. Appl. – 2013. – V. 398, No 1. – P. 68–79. – doi: 10.1016/j.jmaa.2012.08.026.
ГумеровР.Н. Предельные автоморфизмы C∗-алгебр, порожденных изометрическими представлениями полугрупп рациональных чисел // Сиб. матем. журн. – 2018. – Т. 59, № 1. – С. 95–109. – doi: 10.17377/smzh.2018.59.109.
GumerovR.N. Coverings of solenoids and automorphisms of semigroup C∗-algebras // Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки. – 2018. – Т. 160, кн. 2. – С. 275–286.
GumerovR.N. Inductive sequences of Toeplitz algebras and limit automorphisms // Lobachevskii J. Math. – 2020. – V. 41, No 4. – P. 637–643. – doi: 10.1134/S1995080220040125.
ГумеровР.Н.,Липачева Е.В., Григорян Т.А. Об индуктивных пределах систем C∗-алгебр // Изв. вузов. Матем. – 2018. – № 7. – С. 79–85.
GumerovR.N. Inductive limits for systems of Toeplitz algebras // Lobachevskii J. Math. – 2019. – V. 40, No 4. – P. 469–478. – doi: 10.1134/S1995080219040097.
LipachevaE.V. Embedding semigroup C∗-algebras into inductive limits // Lobachevskii J. Math. – 2019. – V. 40, No 5. – P. 667–675. – doi: 10.1134/S1995080219050135.
Gumerov R.N., Lipacheva E.V. Inductive systems of C∗-algebras over posets: A survey // Lobachevskii J. Math. – 2020. – V. 41, No 4. – P. 644–654. – doi: 10.1134/S1995080220040137.
GumerovR.N., LipachevaE.V., Grigoryan T.A. On a topology and limits for inductive systems of C∗-algebras over partially ordered sets // Int. J. Theor. Phys. – 2021. – V. 60, No 9. – P. 499–511. – doi: 10.1007/s10773-019-04048-0.
Григорян С.А., Гумеров Р.Н., Липачева Е.В. Пределы индуктивных последовательностей алгебр Теплица – Кунца // Труды Матем. ин-та им Стеклова. – 2021. – Т. 313. – С. 67–77. – doi: 10.4213/tm4170.
CharatonikJ.J. Means on arc-like continua // Problems from Topology Proceedings / Ed. by E. Pearl. – Toronto: Topol. Atlas, 2003. – P. 197–200.
Aumann G. Über Räume mit Mittelbildungen // Math. Ann. – 1944. – Bd. 119. – S. 210–215. – doi: 10.1007/BF01563741.
Eckmann B. Räume mit Mittelbildungen // Comment. Math. Helvetici. – 1954. – Bd. 28. – S. 329–340. – doi: 10.1007/BF02566939.
Eckmann B., GaneaT., Hilton P.J. Generalized means // Studies in Analysis and Related Topics. – Stanford, Calif.: Stanford Univ. Press, 1962. – P. 82–92.
KeeslingJ. The group of homeomorphisms of a solenoid // Trans. Am. Math. Soc. – 1972. – V. 172. – P. 119–131. – doi: 10.1090/S0002-9947-1972-0315735-6.
Eckmann B. Social choice and topology, a case of pure and applied mathematics // Expos. Math. – 2004. – V. 22, No 4. – P. 385–393. – doi: 10.1016/S0723-0869(04)80016-1.
Krupski P. Means on solenoids // Proc. Am. Math. Soc. – 2003. – V. 131, No 6. – P. 1931–1933. – doi: 10.1090/s0002-9939-02-06738-2.
GumerovR.N. On the existence of means on solenoids // Lobachevskii J. Math. – 2005. – V. 17. – P. 43–46.
ГумеровР.Н. Характеры и накрытия компактных групп // Изв. вузов. Матем. – 2014. – № 4. – C. 11–17.
van Kampen E.R. On almost periodic functions of constant absolute value // J. London Math. Soc. – 1937. – V. s1-12, No 1. – P. 3–6. – doi: 10.1112/jlms/s1-12.45.3.
FortM.K. Jr. Images of plane continua // Am. J. Math. – 1959. – V. 81, No 3. – P. 541–546. – doi: 10.2307/2372912.