A.D. Kalmykova a, E.N. Yakupova a,b, F.A. Bekmuratova b, I.M. Fitsev b, G.K. Ziyatdinova a
aKazan Federal University, Kazan, 420008 Russia
bFederal Center for Toxicological, Radiation, and Biological Safety, Kazan, 420075 Russia
ORIGINAL ARTICLE
Full text PDF
DOI: 10.26907/2542-064X.2023.1.94-117
For citation: Kalmykova A.D., Yakupova E.N., Bekmuratova F.A., Fitsev I.M., Ziyatdinova G.K. Evaluation of the antioxidant properties and GC-MSD analysis of commercial essential oils from plants of the Lamiaceae family. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 94–117. doi: 10.26907/2542-064X.2023.1.94-117.
Для цитирования: Kalmykova A.D., Yakupova E.N., Bekmuratova F.A., Fitsev I.M., Ziyatdinova G.K. Evaluation of the antioxidant properties and GC-MSD analysis of commercial essential oils from plants of the Lamiaceae family // Учен. зап. Казан. ун-та. Сер. Естеств. науки. – 2023. – Т. 165, кн. 1. – С. 94–117. – doi: 10.26907/2542-064X.2023.1.94-117.
Abstract
Plants of the Lamiaceae family have been used for thousands of years in cooking, as well as phyto- and aromatherapy. Their essential oils are characterized by high antioxidant and other types of biological activities. In our study, the phytochemical profile and quantification of the essential oil components of thyme, marjoram, and sage were analyzed by gas chromatography with mass-spectrometric detection (GC-MSD). The antioxidant properties of the samples were evaluated using total antioxidant parameters (total antioxidant capacity (TAC), ferric reducing power (FRP), antioxidant activity (AOA) towards 2,2-diphenyl-1-picrylhydrazyl (DPPH•), and total phenolics by Folin–Ciocalteu method). The obtained FRP was 46–321-fold lower than TAC, which is consistent with the contents of phenolics identified in the samples. Terpenes, isopropylmethylphenols, and eugenol turned out to be the major components of all essential oils and determined their TAC and AOA. The Folin–Ciocalteu method was applicable to the thyme essential oil only. Its FRP, which is based on the reaction of phenolic antioxidants with electrogenerated ferricyanide ions, agreed well with the total phenolic contents (329 ± 17 and 334 ± 15 mg of carvacrol per mL, respectively). The thyme essential oil had the highest antioxidant parameters, while sage showed the weakest antioxidant properties. Positive correlations (r = 0.8846–0.9964) of the antioxidant parameters were obtained.
Keywords: essential oils, total antioxidant capacity, ferric reducing power, total phenolics, coulometric titration, phytochemical profile, marjoram, thyme, sage
Acknowledgments. This study was supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).
References
- Nieto G. Biological activities of three essential oils of the Lamiaceae Family. Medicines, 2017, vol. 4, no. 3, art. 63. doi: 10.3390/medicines4030063.
- Carović-Stanko K., Petek M., Grdiša M., Pintar J., Bedeković D., Herak Ćustić M., Satovic Z. Medicinal plants of the family Lamiaceae as functional foods – a review. Czech J. Food Sci., 2016, vol. 34, no. 5, pp. 377–390. doi: 10.17221/504/2015-CJFS.
- Ramos da Silva L.R., Ferreira O.O., Cruz J.N., de Jesus Pereira Franco C., Dos Anjos T.O., Cascaes M.M., da Costa W.A., Andrade E.H.D.A., de Oliveira M.S. Lamiaceae essential oils, phytochemical profile, antioxidant, and biological activities. Evidence-Based Complementary Altern. Med., 2021, vol. 2021, art. 6748052. doi: 10.1155/2021/6748052.
- Grausgruber-Gröger S., Schmiderer C., Steinborn R., Novak J. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae). J. Plant Physiol., 2012, vol. 169, no. 4, pp. 353–359. doi: 10.1016/j.jplph.2011.11.004.
- Nurzyñska-Wierdak R., Zawislak G., Kowalski R. The content and composition of essential oil of Origanum majorana L. grown in Poland depending on harvest time and method of raw material preparation. J. Essent. Oil-Bear. Plants, 2015, vol. 18, no. 6, pp. 1482–1489. doi: 10.1080/0972060X.2013.831569.
- Milenković L., Ilić Z.S., Šunić L., Tmušić N., Stanojević L., Stanojević J., Cvetković D. Modification of light intensity influence essential oils content, composition and antioxidant activity of thyme, marjoram and oregano. Saudi J. Biol. Sci., 2021, vol. 28, no. 11, pp. 6532–6543. doi: 10.1016/j.sjbs.2021.07.018.
- Masyita A., Sari R.M., Astuti A.D., Yasir B., Rumata N.R., Emran T.B., Nainu F., Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food. Chem.: X, 2022, vol. 13, art. 100217. doi: 10.1016/j.fochx.2022.100217.
- Wildwood C. The Encyclopedia of Aromatherapy. Rochester, Healing Arts Press, 1996. 320 p.
- Basavegowda N., Baek K.-H. Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules, 2021, vol. 11, no. 9, art. 1267. doi: 10.3390/biom11091267.
- Sonam K.S., Guleria S. Synergistic antioxidant activity of natural products. Ann. Pharmacol. Pharm., 2017, vol. 2, no. 8, art. 1086.
- Zaïri A., Nouir S., Khalifa A.M., Ouni B., Haddad H., Khelifa A., Trabelsi M. Phytochemical analysis and assessment of biological properties of essential oils obtained from thyme and rosmarinus species. Curr. Pharm. Biotechnol., 2020, vol. 21, no. 5, pp. 414–424. doi: 10.2174/1389201020666191019124630.
- Vera R.R., Chane-Ming J. Chemical composition of the essential oil of marjoram (Origanum majorana L.) from Reunion Island. Food Chem., 1999, vol. 66, no. 2, pp. 143–145. doi: 10.1016/S0308-8146(98)00018-1.
- Assaggaf H.M., Naceiri Mrabti H., Rajab B.S., Attar A.A., Alyamani R.A., Hamed M., El Omari N., El Menyiy N., Hazzoumi Z., Benali T., Al-Mijalli S.H., Zengin G., AlDhaheri Y., Eid A.H., Bouyahya A. Chemical analysis and investigation of biological effects of Salvia officinalis essential oils at three phenological stages. Molecules, 2022, vol. 27, no. 16, art. 5157. doi: 10.3390/molecules27165157.
- Goudjil M.B., Zighmi S., Hamada D., Mahcene Z., Bencheikh S.E., Ladjel S. Biological activities of essential oils extracted from Thymus capitatus (Lamiaceae). S. Afr. J. Bot., 2020, vol. 128, pp. 274–282. doi: 10.1016/j.sajb.2019.11.020.
- Schmidt E., Bail S., Buchbauer G., Stoilova I., Krastanov A., Stoyanova A., Jirovetz L. Chemical composition, olfactory evaluation and antioxidant effects of the essential oil of Origanum majorana L. from Albania. Nat. Prod. Commun., 2008, vol. 3, no. 7, pp. 1051–1056. doi: 10.1177/1934578X0800300704.
- Tepe B., Daferera D., Sokmen A., Sokmen M., Polissiou M. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem., 2005, vol. 90, no. 3, pp. 333–340. doi: 10.1016/j.foodchem.2003.09.013.
- Paudel P.N., Satyal P., Satyal R., Setzer W.N., Gyawali R. Chemical composition, enantiomeric distribution, antimicrobial and antioxidant activities of Origanum majorana L. essential oil from Nepal. Molecules, 2022, vol. 27, no. 18, art. 6136. doi: 10.3390/molecules27186136.
- He T., Li X., Wang X., Xu X., Yan X., Li X., Sun S., Dong Y., Ren X., Liu X., Wang Y., Sui H., Xia Q., She G. Chemical composition and anti-oxidant potential on essential oils of Thymus quinquecostatus Celak. from Loess Plateau in China, regulating Nrf2/Keap1 signaling pathway in zebrafish. Sci. Rep., 2020, vol. 10, art. 11280. doi: 10.1038/s41598-020-68188-8.
- Elansary H.O. Chemical diversity and antioxidant capacity of essential oils of marjoram in Northwest Egypt. J. Essent. Oil-Bear. Plants, 2015, vol. 18, no. 4, pp. 917–924. doi: 10.1080/0972060X.2014.958561.
- Wang H.-F., Yih K.-H., Yang C.-H., Huang K.-F. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils. J. Food Drug Anal., 2017, vol. 25, no. 4, pp. 881–889. doi: 10.1016/j.jfda.2017.05.007.
- Cutillas A.-B., Carrasco A., Martinez-Gutierrez R., Tomas V., Tudela J. Thyme essential oils from Spain: Aromatic profile ascertained by GC–MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J. Food Drug Anal., 2018, vol. 26, no. 2, pp. 529–544. doi: 10.1016/j.jfda.2017.05.004.
- Dandlen S.A., Lima A.S., Mendes M.D., Miguel M.G., Faleiro M.L., Sousa M.J., Pedro L.G., Barroso J.G., Figueiredo A.C. Antioxidant activity of six Portuguese thyme species essential oils. Flavour Fragrance J., 2010, vol. 25, no. 3, pp. 150–155. doi: 10.1002/ffj.1972.
- Cutillas A.-B., Carrasco A., Martinez-Gutierrez R., Tomas V., Tudela J. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS ONE, 2018, vol. 13, no. 1, art. e0190790. doi: 10.1371/journal.pone.0190790.
- Gedikoğlu A., Sökmen M., Çivit A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutr., 2019, vol. 7, no. 5, pp. 1704–1714. doi: 10.1002/fsn3.1007.
- Nickavar B., Esbati N. Evaluation of the antioxidant capacity and phenolic content of three Thymus species. J. Acupunct. Meridian Stud., 2012, vol. 5, no. 3, pp. 119–125. doi: 10.1016/j.jams.2012.03.003.
- Zhong Y., Shahidi F. Methods for the assessment of antioxidant activity in foods. In: Shahidi F. (Ed.) Handbook of Antioxidants for Food Preservation. Sawston, Cambridge, Woodhead Publ., 2015, pp. 287–333. doi: 10.1016/B978-1-78242-089-7.00012-9.
- Pulido R., Bravo L., Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem., 2000, vol. 48, no. 8, pp. 3396–3402. doi: 10.1021/jf9913458.
- Ziyatdinova G., Kalmykova A., Kupriyanova O. Constant-current coulometry with electrogenerated titrants as a novel tool for the essential oils screening using total antioxidant parameters. Antioxidants, 2022, vol. 11, no. 9, art. 1749. doi: 10.3390/antiox11091749.
- Ziyatdinova G.K., Budnikov H.C., Pogorel’tzev V.I., Ganeev T.S. The application of coulometry for total antioxidant capacity determination of human blood. Talanta, 2006, vol. 68, no. 3, pp. 800–805. doi: 10.1016/j.talanta.2005.06.010.
- Ziyatdinova G., Nizamova A., Budnikov H. Novel coulometric approach to evaluation of total free polyphenols in tea and coffee beverages in presence of milk proteins. Food Anal. Methods, 2011, vol. 4, no. 3, pp. 334–340. doi: 10.1007/s12161-010-9174-0.
- Ziyatdinova G., Salikhova I., Budnikov H. Coulometric titration with electrogenerated oxidants as a tool for evaluation of cognac and brandy antioxidant properties. Food Chem., 2014, vol. 150, pp. 80–86. doi: 10.1016/j.foodchem.2013.10.133.
- Ziyatdinova G., Budnikov H. Analytical capabilities of coulometric sensor systems in the antioxidants analysis. Chemosensors, 2021, vol. 9, no. 5, art. 91. 1–18. doi: 10.3390/chemosensors9050091.
- Babushok V.I., Linstrom P.J., Zenkevich I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data, 2011, vol. 40, no. 4, art. 043101. doi: 10.1063/1.3653552.
- Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Carol Stream, Allured Publ., 2007. 804 p.
- Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol., 1995, vol. 28, no. 1, pp. 25–30. doi: 10.1016/S0023-6438(95)80008-5.
- Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, vol. 16, no. 3, pp. 144–158. doi: 10.5344/ajev.1965.16.3.144.
- Abbasi-Maleki S., Kadkhoda Z., Taghizad-Farid R. The antidepressant-like effects of Origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming test. J. Tradit. Complementary Med., 2020, vol. 10, no. 4, pp. 327–335. doi: 10.1016/j.jtcme.2019.01.003.
- Busatta C., Vidal R.S., Popiolski A.S., Mossi A.J., Dariva C., Rodrigues M.R.A., Corazza F.C., Corazza M.L., Oliveira J.V., Cansian R.L. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage. Food Microbiol., 2008, vol. 25, no. 1, pp. 207–211. doi: 10.1016/j.fm.2007.07.003.
- Raina A.P., Negi K.S. Essential oil composition of Origanum majorana and Origanum vulgare ssp. hirtum growing in India. Chem. Nat. Compd., 2012, vol. 47, no. 6, pp. 1015–1017. doi: 10.1007/s10600-012-0133-4.
- Hajlaoui H., Mighri H., Aouni M., Gharsallah N., Kadri A. Chemical composition and in-vitro evaluation of antioxidant, antimicrobial, cytotoxicity and anti-acetylcholinesterase properties of Tunisian Origanum majorana L. essential oil. Microb. Pathog., 2016, vol. 95, pp. 86–94. doi: 10.1016/j.micpath.2016.03.003.
- Aebisher D., Cichonski J., Szpyrka E., Masjonis S., Chrzanowski G. Essential oils of seven Lamiaceae plants and their antioxidant capacity. Molecules, 2021, vol. 26, no. 13, art. 3793. doi: 10.3390/molecules26133793.
- Sienkiewicz M., Łysakowska M., Denys P., Kowalczyk E. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microb. Drug Resist., 2012, vol. 18, no. 2, pp. 137–148. doi: 10.1089/mdr.2011.0080.
- El-Kased R.F., El-Kersh D.M. GC-MS profiling of naturally extracted essential oils: Antimicrobial and beverage preservative actions. Life, 2022, vol. 12, no. 10, art. 1587. doi: 10.3390/life12101587.
- Antih J., Houdkova M., Urbanova K., Kokoska L. Antibacterial activity of Thymus vulgaris L. essential oil vapours and their GC/MS analysis using solid-phase microextraction and syringe headspace sampling techniques. Molecules, 2021, vol. 26, no. 21, art. 6553. doi: 10.3390/molecules26216553.
- Viuda-Martos M., El Gendy A.El-N.G.S., Sendra E., Fernández-López J., Razik K.A.A.E., Omer E.A., Pérez-Alvarez J.A. Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants. J. Agric. Food Chem., 2010, vol. 58, no. 16, pp. 9063–9070. doi: 10.1021/jf101620c.
- Tahmasebi S., Majd A., Mehrafarin A., Jonoubi P. Comparative ontogenetic survey of the essential oil composition in Origanum vulgare L., and Origanum majorana L. Acta Biol. Szeged., 2016, vol. 60, no. 2, pp. 105–111.
- Jiang Z.-T., Li R., Wang Y., Chen S.-H., Guan W.-Q. Volatile oil composition of natural spice, Origanum majorana L. grown in China. J. Essent. Oil-Bear. Plants, 2011, vol. 14, no. 4, pp. 458–462. doi: 10.1080/0972060X.2011.10643601.
- Shrestha S., Nyaupane D.R., Yahara S., Rajbhandari M., Gewali M.B. Quality assessment of the essential oils from Artemisia Gmelinii and Orifanum Majorana of Nepali origin. Sci. World, 2013, vol. 11, no. 11, pp. 77–80. doi: 10.3126/sw.v11i11.8557.
- Ramos S., Rojas L.B., Lucena M.E., Meccia G., Usubillaga A. Chemical composition and antibacterial activity of Origanum majorana L. essential oil from the Venezuelan Andes. J. Essent. Oil Res., 2011, vol. 23, no. 5, pp. 45–49. doi: 10.1080/10412905.2011.9700481.
- Barazandeh M.M. Essential oil composition of Origanum majorana L. from Iran. J. Essent. Oil Res., 2001, vol. 13, no. 2, pp. 76–77. doi: 10.1080/10412905.2001.9699616.
- Arnold N., Bellomaria B., Valentini G., Arnold H.J. Comparative study of the essential oils from three species of Origanum growing wild in the Eastern Mediterranean region. J. Essent. Oil Res., 1993, vol. 5, no. 1, pp. 71–77. doi: 10.1080/10412905.1993.9698172.
- Tabanca N., Özek T., Baser K.H.C., Tümen G. Comparison of the essential oils of Origanum majorana L. and Origanum x majoricum Cambess. J. Essent. Oil Res., 2004, vol. 16, no. 3, pp. 248–252. doi: 10.1080/10412905.2004.9698713.
- Kot B., Wierzchowska K., Piechota M., Czerniewicz P., Chrzanowski G. Antimicrobial activity of five essential oils from Lamiaceae against multidrug-resistant Staphylococcus aureus. Nat. Prod. Res., 2019, vol. 33, no. 24, pp. 3587–3591. doi: 10.1080/14786419.2018.1486314.
- Mohamed A.Y., Mustafa A.A. Gas chromatography-mass spectrometry (GC-MS) analysis of essential oil Salvia officinalis in Sudan. J. Multidiscip. Res. Rev., 2019, vol. 1, no. 1, pp. 43–45.
- Farhat M.B., Jordán M.J., Chaouch-Hamada R., Landoulsi A., Sotomayor J.A. Phenophase effects on sage (Salvia officinalis L.) yield and composition of essential oil. J. Appl. Res. Med. Aromat. Plants, 2016, vol. 3, no. 3, pp. 87–93. doi: 10.1016/j.jarmap.2016.02.001.
- Lakhal H., Ghorab H., Chibani S., Kabouche A., Semra Z., Smati F., Abuhamdah S., Kabouche Z. Chemical composition and biological activities of the essential oil of Salvia officinalis from Batna (Algeria). Pharm. Lett., 2013, vol. 5, no. 3, pp. 310–314.
- Borugă O., Jianu C., Mişcă C., Goleţ I., Gruia A.T., Horhat F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life, 2014, vol. 7, spec. issue 3, pp. 56–60.
- Bouyahya A., El Omari N., Elmenyiy N., Guaouguaou F.-E., Balahbib A., Belmehdi O., Salhi N., Imtara H., Mrabti H.N., El-Shazly M., Bakri Y. Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci. Technol., 2021, vol. 115, pp. 147–254. doi: 10.1016/j.tifs.2021.03.032.
- Tohidi B., Rahimmalek M., Trindade H. Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Ind. Crops Prod., 2019, vol. 134, pp. 89–99. doi: 10.1016/j.indcrop.2019.02.038.
- Behrendorff J.B., Vickers C.E., Chrysanthopoulos P., Nielsen L.K. 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis. Microb. Cell Fact., 2013, vol. 12, art. 76. doi: 10.1186/1475-2859-12-76.
- do Nascimento K.F., Moreira F.M.F., Alencar Santos J., Kassuya C.A.L., Croda J.H.R., Cardoso C.A.L., Vieira M.D.C., Ruiz A.L.T.G., Foglio M.A., de Carvalho J.E., Formagio A.S.N. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol., 2018, vol. 210, pp. 351–358. doi: 10.1016/j.jep.2017.08.030.
- Wojtunik K.A., Ciesla L.M., Waksmundzka-Hajnos M. Model studies on the antioxidant activity of common terpenoid constituents of essential oils by means of the 2,2-diphenyl-1-picrylhydrazyl method. J. Agric. Food Chem., 2014, vol. 62, no. 37, pp. 9088–9094. doi: 10.1021/jf502857s.
- Pérez-González A., Rebollar-Zepeda A.M., León-Carmona J.R., Galano A. Reactivity indexes and O-H bond dissociation energies of a large series of polyphenols: Implications for their free radical scavenging activity. J. Mex. Chem. Soc., 2012, vol. 56, no. 3, pp. 241–249. doi: 10.29356/jmcs.v56i3.285.
- Aazza S., Lyoussi B., Miguel M.G. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules, 2011, vol. 16, no. 9, pp. 7672–7690. doi: 10.3390/molecules16097672.
- Xie J., Schaich K.M. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem., 2014, vol. 62, no. 19, pp. 4251–4260. doi: 10.1021/jf500180u.
- Alizadeh A., Alizadeh O., Amari G., Zare M. Essential oil composition, total phenolic content, antioxidant activity and antifungal properties of Iranian Thymus daenensis subsp. daenensis Celak. as in influenced by ontogenetical variation. J. Essent. Oil-Bear. Plants, 2013, vol. 60, no. 1, pp. 59–70. doi: 10.1080/0972060X.2013.764190.
- Vasile C., Sivertsvik M., Miteluţ A.C., Brebu M.A., Stoleru E., Rosnes J.T., Tănase E.E., Khan W., Pamfil D., Cornea C.P., Irimia A., Popa M.E. Comparative analysis of the composition and active property evaluation of certain essential oils to assess their potential applications in active food packaging. Materials, 2017, vol. 10, no. 1, art. 45. doi: 10.3390/ma10010045.
- Mutlu-Ingok A., Catalkaya G., Capanoglu E., Karbancioglu-Guler F. Antioxidant and antimicrobial activities of fennel, ginger, oregano and thyme essential oils. Food Front., 2021, vol. 2, no. 4, pp. 508–518. doi: 10.1002/fft2.77.
- Archdeacon T.J. Correlation and Regression Analysis: A Historian’s Guide. Madison, Univ. of Wisconsin Press, 1994. 352 p.
Received January 25, 2023
Accepted February 2, 2023
Kalmykova Alena Denisovna, Student of A.M. Butlerov Institute of Chemistry
Kazan Federal University
ul. Kremlevskaya, 18, Kazan, 420008 Russia
E-mail: alena.kalmykova.pnb.2000@mail.ru
Yakupova Elvira Nailevna, PhD Student of A.M. Butlerov Institute of Chemistry; Engineer
Kazan Federal University
ul. Kremlevskaya, 18, Kazan, 420008 Russia
Federal Center for Toxicological, Radiation, and Biological Safety
ul. Nauchny Gorodok-2, Kazan, 420075 Russia
E-mail: elviraeakupova96@mail.ru
Bekmuratova Feruzakhon Altmishevna, Junior Research Fellow
Federal Center for Toxicological, Radiation, and Biological Safety
ul. Nauchny Gorodok-2, Kazan, 420075 Russia
E-mail: pantera08@yandex.ru
Fitsev Igor Mikhailovich, PhD in Chemistry, Leading Research Fellow
Federal Center for Toxicological, Radiation, and Biological Safety
ul. Nauchny Gorodok-2, Kazan, 420075 Russia
E-mail: fitzev@mail.ru
Ziyatdinova Guzel Kamilevna, Doctor of Chemical Sciences, Professor, Department of Analytical Chemistry
Kazan Federal University
ul. Kremlevskaya, 18, Kazan, 420008 Russia
E-mail: Ziyatdinovag@mail.ru
Контент доступен под лицензией Creative Commons Attribution 4.0 License.