Lindow S.E., Brandl M.T. Microbiology of the phyllosphere // Appl. Environ. Microbiol. 2003. V. 69, No 4. P. 1875–1883. doi: 10.1128/AEM.69.4.1875-1883.2003.
Sundin G.W., Jacobs J.L. Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L.) // Microb. Ecol. 1999. V. 38, No 1. P. 27–38. doi: 10.1007/s002489900152.
Bunster L., Fokkema N.J., Schippers B. Effect of surface-active Pseudomonas spp. on leaf wettability // Appl. Environ. Microbiol. 1989. V. 55, No 6. P. 1340–1345. doi: 10.1128/aem.55.6.1340-1345.1989.
Yao H., Sun X., He C., Maitra P., Li X.-C., Guo L.-D. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem // Microbiome. 2019. V. 7, No 1. art. 57. doi: 10.1186/s40168-019-0671-0.
Rodrigo S., García-Latorre C., Santamaria O. Metabolites produced by fungi against fungal phytopathogens: Review, implementation and perspectives // Plants. 2022. V. 11, No 1. art. 81. doi: 10.3390/plants11010081.
Rosenblueth M., Martínez-Romero E. Bacterial endophytes and their interactions with hosts // Mol. Plant Microbe Interact. 2006. V. 19, No 8. P. 827–837. doi: 10.1094/MPMI-19-0827.
Alam B., Lǐ J., Gě Q., Khan M.A., Gōng J., Mehmood S., Yuán Y., Gǒng W. Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? // Front. Plant Sci. 2021. V. 12. art. 791033. doi: 10.3389/fpls.2021.791033.
Zhang H., Li X., Yang Q., Sun L., Yang X., Zhou M., Deng R., Bi L. Plant growth, antibiotic uptake, and prevalence of antibiotic resistance in an endophytic system of pakchoi under antibiotic exposure // Int. J. Environ. Res. Public Health. 2017. V. 14, No 11. art. 1336. doi: 10.3390/ijerph14111336.
Buschart A., Sachs S., Chen X., Herglotz J., Krause A., Reinhold-Hurek B. Flagella mediate endophytic competence rather than act as MAMPS in rice – Azoarcus sp. strain BH72 interactions // Mol. Plant-Microbe Interact. 2012. V. 25, No 2. P. 191–199. doi: 10.1094/MPMI-05-11-0138.
Vandenkoornhuyse P., Quaiser A., Duhamel M., Le Van A., Dufresne A. The importance of the microbiome of the plant holobiont // New Phytol. 2015. V. 206, No 4. P. 1196–1206. doi: 10.1111/nph.13312.
Zipfel C., Robatzek S., Navarro L., Oakeley E.J., Jones J.D.G., Felix G., Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception // Nature. 2004. V. 428, No 6984. P. 764–767. doi: 10.1038/nature02485.
Khare E., Mishra J., Arora N.K. Multifaceted interactions between endophytes and plant: Developments and prospects // Front. Microbiol. 2018. V. 9. art. 2732. doi: 10.3389/fmicb.2018.02732.
Bhore S.J., Nithya R., Loh C.Y. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds // Bioinformation. 2010. V. 5, No 5. P. 191–197. doi: 10.6026/97320630005191.
Shahzad R., Waqas M., Khan A.L., Asaf S., Khan M.A., Kang S.-M., Yun B.-W., Lee I.-J. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa // Plant Physiol. Biochem. 2016. V. 106. P. 236–243. doi: 10.1016/j.plaphy.2016.05.006.
Tian B.-Y., Cao Y., Zhang K.-Q. Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots // Sci. Rep. 2015. V. 5, No 1. art. 17087. doi: 10.1038/srep17087.
Sessitsch A., Hardoim P., Döring J., Weilharter A., Krause A., Woyke T., Mitter B., Hauberg-Lotte L., Friedrich F., Rahalkar M., Hurek T., Sarkar A., Bodrossy L., van Overbeek L., Brar D., van Elsas J.D., Reinhold-Hurek B. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis // Mol. Plant-Microbe Interact. 2012. V. 25, No 1. P. 28–36. doi: 10.1094/MPMI-08-11-0204.
Ye W., Murata Y. Microbe associated molecular pattern signaling in guard cells // Front. Plant Sci. 2016. V. 7. art. 583. doi: 10.3389/fpls.2016.00583.
Krause A., Ramakumar A., Bartels D., Battistoni F., Bekel T., Boch J., Böhm M., Friedrich F., Hurek T., Krause L., Linke B., McHardy A.C., Sarkar A., Schneiker S., Syed A.A., Thauer R., Vorhölter F.-J., Weidner S., Pühler A., Reinhold-Hurek B., Kaiser O., Goesmann A. Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72 // Nat. Biotechnol. 2006. V. 24, No 11. P. 1384–1391. doi: 10.1038/nbt1243.
Frank A.C., Saldierna Guzmán J.P., Shay J.E. Transmission of bacterial endophytes // Microorganisms. 2017. V. 5, No 4. art. 70. doi: 10.3390/microorganisms5040070.
Lopez-Fernandez S., Mazzoni V., Pedrazzoli F., Pertot I., Campisano A. A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants // Front. Microbiol. 2017. V. 8. art. 834. doi: 10.3389/fmicb.2017.00834.
Puente M.E., Li C.Y., Bashan Y. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings // Environ. Exp. Bot. 2009. V. 66, No 3. P. 402–408. doi: 10.1016/j.envexpbot.2009.04.007.
Rout M.E., Chrzanowski T.H., Westlie T.K., DeLuca T.H., Callaway R.M., Holben W.E. Bacterial endophytes enhance competition by invasive plants // Am. J. Bot. 2013. V. 100, No 9. P. 1726–1737. doi: 10.3732/ajb.1200577.
Schardl C.L. Epichloë festucae and related mutualistic symbionts of grasses // Fungal Genet. Biol. 2001. V. 33, No 2. P. 69–82. doi: 10.1006/fgbi.2001.1275.
Cope-Selby N., Cookson A., Squance M., Donnison I., Flavell R., Farrar K. Endophytic bacteria in Miscanthus seed: Implications for germination, vertical inheritance of endophytes, plant evolution and breeding // GCB Bioenergy. 2017. V. 9, No 1. P. 57–77. doi: 10.1111/gcbb.12364.
Barret M., Briand M., Bonneau S., Préveaux A., Valière S., Bouchez O., Hunault G., Simoneau P., Jacquesa M.-A. Emergence shapes the structure of the seed microbiota // Appl. Environ. Microbiol. 2015. V. 81, No 4. P. 1257–1266. doi: 10.1128/AEM.03722-14.
Truyens S., Weyens N., Cuypers A., Vangronsveld J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants // Environ. Microbiol. Rep. 2015. V. 7, No 1. P. 40–50. doi: 10.1111/1758-2229.12181.
Thomas P., Sahu P.K. Vertical transmission of diverse cultivation-recalcitrant endophytic bacteria elucidated using watermelon seed embryos // Front. Microbiol. 2021. V. 12. art. 635810. doi: 10.3389/fmicb.2021.635810.
Khan A.L., Waqas M., Kang S.-M., Al-Harrasi A., Hussain J., Al-Rawahi A., Al-Khiziri S., Ullah I., Ali L., Jung H.-Y., Lee I.-J. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth // J. Microbiol. 2014. V. 52, No 8. P. 689–695. doi: 10.1007/s12275-014-4002-7.
Qin S., Zhang Y.-J., Yuan B., Xu P.-Y., Xing K., Wang J., Jiang J.-H. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress // Plant Soil. 2013. V. 374, No 1. P. 753–766. doi: 10.1007/s11104-013-1918-3.
Subramanian P., Mageswari A., Kim K., Lee Y., Sa T. Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity // Mol. Plant-Microbe Interact. 2015. V. 28, No 10. P. 1073–1081. doi: 10.1094/MPMI-01-15-0021-R.
Su F., Jacquard C., Villaume S., Michel J., Rabenoelina F., Clément C., Barka E.A., Dhondt-Cordelier S., Vaillant-Gaveau N. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana // Front. Plant Sci. 2015. V. 6. art. 810. doi: 10.3389/fpls.2015.00810.
Yang A., Akhtar S.S., Fu Q., Naveed M., Iqbal S., Roitsch T., Jacobsen S.-E. Burkholderia phytofirmans PsJN stimulate growth and yield of quinoa under salinity stress // Plants. 2020. V. 9, No 6. art. 672. doi: 10.3390/plants9060672.
Theocharis A., Bordiec S., Fernandez O., Paquis S., Dhondt-Cordelier S., Baillieul F., Clément C., Barka E.A. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures // Mol. Plant-Microbe Interact. 2012. V. 25, No 2. P. 241–249. doi: 10.1094/MPMI-05-11-0124.
Ma Y., Rajkumar M., Zhang C., Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation // J. Environ. Manage. 2016. V. 174. P. 14–25. doi: 10.1016/j.jenvman.2016.02.047.
Madhaiyan M., Poonguzhali S., Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.) // Chemosphere. 2007. V. 69, No 2. P. 220–228. doi: 10.1016/j.chemosphere.2007.04.017.
Lafi F.F., AlBladi M.L., Salem N.M., Al-Banna L., Alam I., Bajic V.B., Hirt H., Saad M.M. Draft genome sequence of the plant growth-promoting Pseudomonas punonensis strain D1-6 isolated from the desert plant Erodium hirtum in Jordan // Genome Announce. 2017. V. 5, No 2. art. e01437-16. doi: 10.1128/genomeA.01437-16.
Gourion B., Berrabah F., Ratet P., Stacey G. Rhizobium–legume symbioses: The crucial role of plant immunity // Trends Plant Sci. 2015. V. 20, No 3. P. 186–194. doi: 10.1016/j.tplants.2014.11.008.
Straub D., Rothballer M., Hartmann A., Ludewig U. The genome of the endophytic bacterium H. frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants // Front. Microbiol. 2013. V. 4. art. 168. doi: 10.3389/fmicb.2013.00168.
Moyes A.B., Kueppers L.M., Pett-Ridge J., Carper D.L., Vandehey N., O’Neil J., Frank A.C. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer // New Phytol. 2016. V. 210, No 2. P. 657–668. doi: 10.1111/nph.13850.
Puri A., Padda K.P., Chanway C.P. Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial // Symbiosis. 2016. V. 69, No 2. P. 123–129. doi: 10.1007/s13199-016-0385-z.
Schalk I.J., Hannauer M., Braud A. New roles for bacterial siderophores in metal transport and tolerance // Environ. Microbiol. 2011. V. 13, No 11. P. 2844–2854. doi: 10.1111/j.1462-2920.2011.02556.x.
Oteino N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates // Front. Microbiol. 2015. V. 6. art. 745. doi: 10.3389/fmicb.2015.00745.
Bodenhausen N., Somerville V., Desirò A., Walser J.-C., Borghi L., van der Heijden M.G.A., Schlaeppi K. Petunia- and Arabidopsis-specific root microbiota responses to phosphate supplementation // Phytobiomes J. 2019. V. 3, No 2. P. 112–124. doi: 10.1094/PBIOMES-12-18-0057-R.
Kusari P., Kusari S., Lamshöft M., Sezgin S., Spiteller M., Kayser O. Quorum quenching is an antivirulence strategy employed by endophytic bacteria // Appl. Microbiol. Biotechnol. 2014. V. 98, No 16. P. 7173–7183. doi: 10.1007/s00253-014-5807-3.
Carrión V.J. Cordovez V., Tyc O., Etalo D.W., de Bruijn I., de Jager V.C.L., Medema M.H., Eberl L., Raaijmakers J.M. Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils // ISME J. 2018. V. 12, No 9. P. 2307–2321. doi: 10.1038/s41396-018-0186-x.
Weisskopf L., Schulz S., Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions // Nat. Rev. Microbiol. 2021. V. 19, No 6. P. 391–404. doi: 10.1038/s41579-020-00508-1.
D’Alessandro M., Erb M., Ton J., Brandenburg A., Karlen D., Zopfi J., Turlings T.C.J. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions // Plant Cell Environ. 2014. V. 37, No 4. P. 813–826. doi: 10.1111/pce.12220.
De la Cruz-Lopez N., Cruz-López L., Holguín-Meléndez F., Guillén-Navarro G.K., Huerta-Palacios G. Volatile organic compounds produced by cacao endophytic bacteria and their inhibitory activity on Moniliophthora roreri // Curr. Microbiol. 2022. V. 79, No 2. art. 35. doi: 10.1007/s00284-021-02696-2.
Sibanda S., Moleleki L.N., Shyntum D.Y., Coutinho T.A. Quorum sensing in gram-negative plant pathogenic bacteria // Kimatu J.N. (Ed.) Advances in Plant Pathology. InTech, 2018. P. 67–89. doi: 0.5772/intechopen.78003.
Newman K.L., Chatterjee S., Ho K.A., Lindow S.E. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors // Mol. Plant-Microbe Interact. 2008. V. 21, No 3. P. 326–334. doi: 10.1094/MPMI-21-3-0326.
Martinez-Medina A., Flors V., Heil M., Mauch-Mani B., Pieterse C.M.J., Pozo M.J., Ton J., van Dam N.M., Conrath U. Recognizing plant defense priming // Trends Plant Sci. 2016. V. 21, No 10. P. 818–822. doi: 10.1016/j.tplants.2016.07.009.
Glaeser S.P., Imani J., Alabid I., Guo H., Kumar N., Kämpfer P., Hardt M., Blom J., Goesmann A., Rothballer M., Hartmann A., Kogel K.-H. Non-pathogenic Rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica // ISME J. 2015. V. 10, No 4. P. 871–884. doi: 10.1038/ismej.2015.163.
Roberts E., Lindow S. Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora // ISME J. 2013. V. 8, No 2. P. 359–368. doi: 10.1038/ismej.2013.170.
Aly A.H., Debbab A., Kjer J., Proksch P. Fungal endophytes from higher plants: A prolific source of phytochemicals and other bioactive natural products // Fungal Diversity. 2010. V. 41, No 1. P. 1–16. doi: 10.1007/s13225-010-0034-4.
Abdel-Azeem A.M., Abdel-Azeem M.A., Khalil W.F. Chapter 21 – Endophytic fungi as a new source of antirheumatoid metabolites // Watson R.R., Preedy V. R. (Eds.) Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases. Acad. Press, 2019. P. 355–384. doi: 10.1016/B978-0-12-813820-5.00021-0.