Varjani S.J., Upasani V.N. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514 // Bioresour. Technol. – 2016. – V. 220. – P. 175–182. – doi: 10.1016/j.biortech.2016.08.060.
Ramalingam V., Varunkumar K., Ravikumar V., Rajaram R. Production and structure elucidation of anticancer potential surfactin from marine actinomycete Micromonospora marina // Process Biochem. – 2019. – V. 78. – P. 169–177. – doi: 10.1016/j.procbio.2019.01.002.
Wang Y., Nie M., Diwu Z., Lei Y., Li H., Bai X. Characterization of trehalose lipids produced by a unique environmental isolate bacterium Rhodococcus qingshengii strain FF // J. Appl. Microbiol. – 2019. – V. 127, No 5. – P. 1442–1453. – doi: 10.1111/jam.14390.
Radzuan M.N., Banat I.M., Winterburn J. Production and characterization of rhamnolipid using palm oil agricultural refinery waste // Bioresour. Technol. 2017. – V. 225. – P. 99–105. – doi: 10.1016/j.biortech.2016.11.052.
Miao S., Callow N., Dashtbozorg S.S., Salager J.-L., Ju L.-K. Ethylation of Di-rhamnolipids: A green route to produce novel sugar fatty acid nonionic surfactants // J. Surfactants Deterg. – 2014. – V. 17, No 6. – P. 1069–1080. – doi: 10.1007/s11743-014-1641-y.
Sathi Reddy K., Yahya Khan M., Archana K., Gopal Reddy M., Hameeda B. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent // Bioresour. Technol. – 2016. – V. 221. – P. 291–299. – doi: 10.1016/j.biortech.2016.09.041.
Balan S.S., Kumar C.G., Jayalakshmi S. Pontifactin, a new lipopeptide biosurfactant produced by a marine Pontibacter korlensis strain SBK-47: Purification, characterization and its biological evaluation // Process Biochem. – 2016. – V. 51, No 12. – P. 2198–2207. – doi: 10.1016/j.procbio.2016.09.009.
Sharma S., Datta P., Kumar B., Tiwari P., Pandey L.M. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815 // Biodegradation. – 2019. – V. 30. – P. 301–312. – doi: 10.1007/s10532-019-09874-x.
Kim S.K., Kim Y.C., Lee S., Kim J.C., Yun M.Y., Kim I.S. Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae) // J. Agric. Food Chem. – 2011. – V. 59, No 3. – P. 934–938. – doi: 10.1021/jf104027x.
Tesson B., Masse S., Laurent G., Maquet J., Livage J., Martin-Jézéquel V., Coradin T. Contribution of multi-nuclear solid state NMR to the characterization of the Thalassiosira pseudonana diatom cell wall // Anal. Bioanal. Chem. – 2008. – V. 390, No 7. – P. 1889–1898. – doi: 10.1007/s00216-008-1908-0.
Christova N., Lang S., Wray V., Kaloyanov K., Konstantinov S., Stoineva I. Production, structural elucidation, and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain // J. Microbiol. Biotechnol. – 2015. – V. 25, No 4. – P. 439–447. – doi: 10.4014/jmb.1406.06025.
Mishra A., Trivedi R.K. Synthesis and characterization of biosurfactant using waste from oil processing industry as substrate by Pseudomonas aeruginosa (MTCC 424) // Rasayan J. Chem. – 2019. – V. 12, No 2. – P. 1011–1021. – doi: 10.31788/RJC.2019.1225073.
Janek T., Czyżnikowska Ż., Łuczyński J., Gudiña E.J., Rodrigues L.R., Gałęzowska J. Physicochemical study of biomolecular interactions between lysosomotropic surfactants and bovine serum albumin // Colloids Surf., B. – 2017. – V. 159. – P. 750–758. – doi: 10.1016/j.colsurfb.2017.08.046.
Satpute S.K., Banpurkar A.G., Dhakephalkar P.K., Banat I.M., Chopade B.A. Methods for investigating biosurfactants and bioemulsifiers: A review // Crit. Rev. Biotechnol. – 2010. – V. 30, No 2. – P. 127–144. – doi: 10.3109/07388550903427280.
Mulligan C.N., Sharma S.K., Mudhoo A. Biosurfactants. Research Trends and Applications. – Boca Raton: CRC Press, 2014. – 352 p. – doi: 10.1201/b16383.
Fracchia L., Ceresa C., Banat I. Biosurfactants in cosmetic, biomedical and pharmaceutical industry // Microbial Biosurfactants and Their Environmental and Industrial Applications. – Boca Raton: CRC Press, 2018. – P. 258–287. – doi: 10.1201/b21950-11.
Deepika K.V., Ramu Sridhar P., Bramhachari P.V. Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52 // Biocatal. Agric. Biotechnol. – 2015. – V. 4, No 4. – P. 608–615. – doi: 10.1016/j.bcab.2015.09.009.
Dengle-Pulate V., Chandorkar P., Bhagwat S., Prabhune A.A. Antimicrobial and SEM studies of sophorolipids synthesized using lauryl alcohol // J. Surfactants Deterg. – 2014. – V. 17, No 3. – P. 543–552. – doi: 10.1007/s11743-013-1495-8.
Pantazaki A.A., Dimopoulou M.I., Simou O.M., Pritsa A.A. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8 // Appl. Microbiol. Biotechnol. – 2010. – V. 88, No 4. – P. 939–951. – doi: 10.1007/s00253-010-2802-1.
van der Kamp M.W., Shaw K.E., Woods C.J., Mulholland A.J. Biomolecular simulation and modelling: Status, progress and prospects // J. R. Soc., Interface. – 2008. – V. 5, Suppl. 3. – P. S173–S190. – doi: 10.1098/rsif.2008.0105.focus.
Huggins D.J., Biggin Ph.C., Dämgen M.A., Essex J.W., Harris S.A., Henchman R.H., Khalid S., Kuzmanic A., Laughton Ch.A., Michel J., Mulholland A.J., Rosta E., Sansom M.S.P., van der Kamp M.W. Biomolecular simulations: From dynamics and mechanisms to computational assays of biological activity // Wiley Interdiscip. Rev.: Comput. Mol. Sci. – 2019. – V. 9, No 3. – Art. e1393, P. 1–23. – doi: 10.1002/wcms.1393.
Trovato F., Fumagalli G. Molecular simulations of cellular processes // Biophys. Rev. – 2017. – V. 9, No 6. – P. 941–958. – doi: 10.1007/s12551-017-0363-6.
Awoonor-Williams E., Rowley C.N. Molecular simulation of nonfacilitated membrane permeation // Biochim. Biophys. Acta, Biomembr. – 2016. – V. 1858, No 7, Pt. B. – P. 1672–1687. – doi: 10.1016/j.bbamem.2015.12.014.
Awoonor‐Williams E., Isley III W.C., Dale S.G., Johnson E.R., Yu H., Becke A.D., Roux B., Rowley C.N. Quantum chemical methods for modeling covalent modification of biological thiols // J. Comput. Chem. – 2020. – V. 41, No 5. – P. 427–438. – doi: 10.1002/jcc.26064.
Palaniappan S.K., Yachie-Kinoshita A., Ghosh S. Computational systems biology // Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics / Ed. by Ch. Schonbach, K. Nakai, S. Ranganathan. – Elsevier, 2018. – P. 789–795.
von Rueden L., Mayer S., Sifa R., Bauckhage C., Garcke J. Combining machine learning and simulation to a hybrid modelling approach: Current and future directions // Advances in Intelligent Data Analysis XVIII. IDA 2020 / Ed. by M. Berthold, A. Feelders, G. Krempl. – Springer, Cham, 2020. – P. 548–560. – doi: 10.1007/978-3-030-44584-3_43.
Bartók A.P., De S., Poelking C., Bernstein N., Kermode J.R., Csányi G., Ceriotti M. Machine learning unifies the modeling of materials and molecules // Sci. Adv. – 2017. – V. 3, No 12. – Art. e1701816, P. 1–8. – doi: 10.1126/sciadv.1701816.
Chmiela S., Sauceda H.E., Müller K.R., Tkatchenko A. Towards exact molecular dynamics simulations with machine-learned force fields // Nat. Commun. – 2018. – V. 9, No 1. – Art. 3887, P. 1–10. – doi: 10.1038/s41467-018-06169-2.
Noé F., Tkatchenko A., Müller K.-R., Clementi C. Machine learning for molecular simulation // Annu. Rev. Phys. Chem. – 2020. – V. 71. – P. 361–390. – doi: 10.1146/annurev-physchem-042018-052331.
Tkatchenko A. Machine learning for chemical discovery // Nat. Commun. – 2020. – V. 11, No 1. – Art. 4125, P. 1–4. – doi: 10.1038/s41467-020-17844-8.
De Almeida D.G., Soares Da Silva R.C.F., Luna J.M., Rufino R.D., Santos V.A., Banat I.M., Sarubbo L.A. Biosurfactants: Promising molecules for petroleum biotechnology advances // Front. Microbiol. – 2016. – V. 7. – Art. 1718, P. 1–14. – doi: 10.3389/fmicb.2016.01718.
Silva R.C.F.S., Almeida D.G., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L. Applications of biosurfactants in the petroleum industry and the remediation of oil spills // Int. J. Mol. Sci. – 2014. – V. 15, No 7. – P. 12523–12542. – doi: 10.3390/ijms150712523.
Silva V.L., Lovaglio R.B., Von Zuben C.J., Contiero J. Rhamnolipids: Solution against Aedes aegypti? // Front. Microbiol. – 2015. – V. 6. – Art. 88, P. 1–5. – doi: 10.3389/fmicb.2015.00088.
Lazar I., Petrisor I.G., Yen T.F. Microbial enhanced oil recovery (MEOR) // Pet. Sci. Technol. – 2007. – V. 25, No 11. – P. 1353–1366. – doi: 10.1080/10916460701287714.
Brown L.R. Microbial enhanced oil recovery (MEOR) // Curr. Opin. Microbiol. – 2010. – V. 13, No 3. – P. 316–320. – doi: 10.1016/j.mib.2010.01.011.
Nikolova C., Gutierrez T. Use of microorganisms in the recovery of oil from recalcitrant oil reservoirs: Current state of knowledge, technological advances and future perspectives // Front. Microbiol. – 2020. – V. 10. – Art. 2996, P. 1–18. – doi: 10.3389/fmicb.2019.02996.
Adelzadeh M.R., Roostaazad R., Kamali M.R., Bagheri Lotfabad T. A technical feasibility analysis to apply Pseudomonas aeroginosa MR01 biosurfactant in microbial enhanced oil recovery of low-permeability carbonate reservoirs of Iran // Sci. Iran. – 2010. – V. 17, No 1. – P. 46–54.
Gudiña E.J., Rodrigues A.I., de Freitas V., Azevedo Z., Teixeira J.A., Rodrigues L.R. Valorization of agro-industrial wastes towards the production of rhamnolipids // Bioresour. Technol. – 2016. – V. 212. – P. 144–150. – doi: 10.1016/j.biortech.2016.04.027.
Pereira J.F.B., Gudiña E.J., Costa R., Vitorino R., Teixeira J.A., Coutinhoa J.A.P., Rodrigues L.R. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications // Fuel. – 2013. – V. 111. – P. 259–268. – doi: 10.1016/j.fuel.2013.04.040.
Rabiei A., Sharifinik M., Niazi A., Hashemi A., Ayatollahi S. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir // Appl. Microbiol. Biotechnol. – 2013. – V. 97, No 13. – P. 5979–5991. – doi: 10.1007/s00253-013-4863-4.
Nitschke M., Silva S.S.E. Recent food applications of microbial surfactants // Crit. Rev. Food Sci. Nutr. – 2018. – V. 58, No 4. – P. 631–638. – doi: 10.1080/10408398.2016.1208635.
Zhao F., Zhou J.-D., Ma F., Shi R.-J., Han S.-Q., Zhang J., Zhang Y. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery // Bioresour. Technol. – 2016. – V. 207. – P. 24–30. – doi: 10.1016/j.biortech.2016.01.126.
Sachdev D.P., Cameotra S.S. Biosurfactants in agriculture // Appl. Microbiol. Biotechnol. – 2013. – V. 97, No 3. – P. 1005–1016. – doi: 10.1007/s00253-012-4641-8.
Suryanti V., Hastuti S., Wahyuningsih T.D., Mudasir M., Kresnadipayana D., Wiratna I. Heavy metal removal from aqueous solution using biosurfactants produced by Pseudomonas aeruginosa with corn oil as substrate // Indones. J. Chem. – 2018. – V. 18, No 3. – P. 472–478. – doi: 10.22146/ijc.28805.
Maslin P., Maier R.M. Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils // Biorem. J. – 2000. – V. 4, No 4. – P. 295–308. – doi: 10.1080/10889860091114266.
Fenibo E.O., Ijoma G.N., Selvarajan R., Chikere C.B. Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation // Microorganisms. – 2019. – V. 7, No 11. – Art. 581, P. 1–29. – doi: 10.3390/microorganisms7110581.
Liu G., Zhong H., Yang X., Liu Y., Shao B., Liu Z. Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review // Biotechnol. Bioeng. – 2018. – V. 115, No 4. – P. 796–814. – doi: 10.1002/bit.26517.
Robineau M., Guenic S.L., Sanchez L., Chaveriat L., Lequart V., Joly N., Calonne M., Jacquard C., Declerck S., Martin P., Dorey S., Barka E.A. Synthetic mono-rhamnolipids display direct antifungal effects and trigger an innate immune response in tomato against Botrytis cinerea // Molecules. – 2020. – V. 25, No 14. – Art. 3108, P. 1–18. – doi: 10.3390/molecules25143108.
Crouzet J., Arguelles-Arias A., Dhondt-Cordelier S., Cordelier S., Pršic J., Hoff G., Mazeyrat-Goubeyre F., Baillieul F., Clément C., Ongena M., Dorey S. Biosurfactants in plant protection against diseases: Rhamnolipids and lipopeptides case study // Front. Bioeng. Biotechnol. – 2020. – V. 8. – Art. 1014, P. 1–11. – doi: 10.3389/fbioe.2020.01014.
Luzuriaga-Loaiza W.P., Schellenberger R., De Gaetano Y., Akong F.O., Villaume S., Crouzet J., Haudrechy A., Baillieul F., Clément C., Lins L., Allais F., Ongena M., Bouquillon S., Deleu M., Dorey S. Synthetic rhamnolipid bolaforms trigger an innate immune response in Arabidopsis thaliana // Sci. Rep. – 2018. – V. 8. – Art. 8534, P. 1–13. – doi: 10.1038/s41598-018-26838-y.
Monnier N., Furlan A., Botcazon C., Dahi A., Mongelard G., Cordelier S., Clément C., Dorey S., Sarazin C., Rippa S. Rhamnolipids from Pseudomonas aeruginosa are elicitors triggering Brassica napus protection against Botrytis cinerea without physiological disorders // Front. Plant Sci. – 2018. – V. 9. – Art. 1170, P. 1–14. – doi: 10.3389/fpls.2018.01170.
Rani M., Weadge J.T., Jabaji S. Isolation and characterization of biosurfactant-producing bacteria from oil well batteries with antimicrobial activities against food-borne and plant pathogens // Front. Microbiol. – 2020. – V. 11. – Art. 64, P. 1–17. – doi: 10.3389/fmicb.2020.00064.
Ohadi M., Shahravan A., Dehghannoudeh N., Eslaminejad T., Banat I. M., Dehghannoudeh G. Potential use of microbial surfactant in microemulsion drug delivery system: A systematic review // Drug Des., Dev. Ther. – 2020. – V. 14. – P. 541–550. – doi: 10.2147/DDDT.S232325.
Tayeb H.H., Sainsbury F. Nanoemulsions in drug delivery: Formulation to medical application // Nanomedicine. – 2018. – V. 13, No 19. – P. 2507–2525. – doi: 10.2217/nnm-2018-0088.
Gundewadi G., Sarkar D.J., Rudra S.G., Singh D. Preparation of basil oil nanoemulsion using Sapindus mukorossi pericarp extract: Physico-chemical properties and antifungal activity against food spoilage pathogens // Ind. Crops Prod. – 2018. – V. 125. – P. 95–104. – doi: 10.1016/j.indcrop.2018.08.076.
Sathiyanarayanan G., Kiran S.G., Selvin J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17 // Colloids Surf., B. – 2013. – V. 102. – P. 13–20. – doi: 10.1016/j.colsurfb.2012.07.032.
Kiran G.S., Selvin J., Manilal A., Sujith S. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles // Crit. Rev. Biotechnol. – 2011. – V. 31, No 4. – P. 354–364. – doi: 10.3109/07388551.2010.539971.
Nakanishi M., Inoh Y., Kitamoto D., Furuno T. Nano vectors with a biosurfactant for gene transfection and drug delivery // J. Drug Delivery Sci. Technol. – 2009. – V. 19, No 3. – P. 165–169. – doi: 10.1016/S1773-2247(09)50031-7.
Rodrigues L.R. Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors // J. Colloid Interface Sci. – 2015. – V. 449. – P. 304–316. – doi: 10.1016/j.jcis.2015.01.022.
Tanawade O., Shangrapawar T., Bhosale A. Self-emulsifying drug delivery systems: An Overview // Curr. Pharm. Res. – 2020. – V. 10, No 2. – P. 3680–3693.
Subramaniam M.D., Venkatesan D., Iyer M., Subbarayan S., Govindasami V., Roy A., NarayanasamyA., Kamalakannan S., Gopalakrishnan A.V., Thangarasu R., Kumar N.S., Vellingiri B. Biosurfactants and anti-inflammatory activity: A potential new approach towards COVID-19 // Curr. Opin. Environ. Sci. Health. – 2020. – V. 17. – P. 72–81. – doi: 10.1016/j.coesh.2020.09.002.
Smith M.L., Gandolfi S., Coshall P.M., Rahman P.K.S.M. Biosurfactants: A Covid-19 perspective // Front. Microbiol. – 2020. – V. 11. – Art. 1341, P. 1–8. – doi: 10.3389/fmicb.2020.01341.
Weiskirchen R. Severity of coronavirus disease 2019 (COVID-19): Does surfactant matter ? // Front. Microbiol. – 2020. – V. 11. – Art. 1905, P. 1–5. – doi: 10.3389/fmicb.2020.01905.
Das U.N. Can bioactive lipids inactivate coronavirus (COVID-19)? // Arch. Med. Res. – 2020. – V. 51, No 3. – P. 282–286. – doi: 10.1016/j.arcmed.2020.03.004.
Garoff H., Hewson R., Opstelten D.-J.E. Virus maturation by budding // Microbiol. Mol. Biol. Rev. – 1998. – V. 62, No 4. – P. 1171–1190. – doi: 10.1128/MMBR.62.4.1171-1190.1998.
Tabassum K.N. Cyclosporin A production from Tolipocladium inflatum // Gen. Med.: Open Access. – 2017. – V. 5, No 4. – Art. 1000294, P. 1–3. – doi: 10.4172/2327-5146.1000294.
Hamamoto I., Harazaki K., Inase N., Takaku H., Tashiro M., Yamamoto N. Cyclosporin A inhibits the propagation of influenza virus by interfering with a late event in the virus life cycle // Jpn. J. Infect. Dis. – 2013. – V. 66, No 4. – P. 276–283. – doi: 10.7883/yoken.66.276.
Zhu Z., Zhang B., Chen B., Cai Q., Lin W. Biosurfactant production by marine-originated bacteria Bacillus subtilis and its application for crude oil removal // Water, Air, Soil Pollut. – 2016. – V. 227, No. 9. – Art. 328, P. 1–14. – doi: 10.1007/s11270-016-3012-y.
Ma C., Li F., Musharrafieh R.G., Wang J. Discovery of cyclosporine A and its analogs as broad-spectrum anti-influenza drugs with a high in vitro genetic barrier of drug resistance // Antiviral Res. – 2016. – V. 133. – P. 62–72. – doi: 10.1016/j.antiviral.2016.07.019.
Deres K., Schild H., Wiesmüller K.H., Jung G., Rammensee H.G.In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine // Nature. – 1989. – V. 342, No 6249. – P. 561–564. – doi: 10.1038/342561a0.
Wiesmüller K.-H., Jung G., Hess G. Novel low-molecular-weight synthetic vaccine against foot-and-mouth disease containing a potent B-cell and macrophage activator // Vaccine. – 1989. – V. 7, No 1. – P. 29–33. – doi: 10.1016/0264-410X(89)90007-8.
Loleit M., Ihlenfeldt H.G., Brünjes J., Jung G., Müller B., Hoffmann P., BesslerW.G., Pierres M., Haas G. Synthetic peptides coupled to the lipotripeptide P3CSS induce in vivo B and Thelper cell responses to HIV-1 reverse transcriptase // Immunobiology. – 1996. – V. 195, No 1. – P. 61–76. – doi: 10.1016/S0171-2985(96)80006-4.
Borsanyiova M., Patil A., Mukherji R., Prabhune A., Bopegamage S. Biological activity of sophorolipids and their possible use as antiviral agents // Folia Microbiol. – 2016. – V. 61, No 1. – P. 85–89. – doi: 10.1007/s12223-015-0413-z.
Shah V., Doncel G.F., Seyoum T., Eaton K.M., Zalenskaya I., Hagver R., Azim A., Gross R. Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities // Antimicrob. Agents Chemother. – 2005. – V. 49, No 10. – P. 4093–4100. – doi: 10.1128/AAC.49.10.4093-4100.2005.
Hardin R., Pierre J., Schulze R., Mueller C.M., Fu S.L., Wallner S.R., Stanek A., Shah V., Gross R.A., Weedon J., Nowakowski M., Zenilman M.E., Bluth M.H. Sophorolipids improve sepsis survival: Effects of dosing and derivatives // J. Surg. Res. – 2007. – V. 142, No 2. – P. 314–319. – doi: 10.1016/j.jss.2007.04.025.
Ribeiro B.G., Guerra J.M.C., Sarubbo L.A. Potential food application of a biosurfactant produced by Saccharomyces cerevisiae URM 6670 // Front. Bioeng. Biotechnol. – 2020. – V. 8. – Art. 434, P. 1–13. – doi: 10.3389/fbioe.2020.00434.
Campos J.M., Montenegro Stamford T.L., Sarubbo L.A., de Luna J.M., Rufino R.D., Banat I.M. Microbial biosurfactants as additives for food industries // Biotechnol. Prog. – 2013. – V. 29, No 5. – P. 1097–1108. – doi: 10.1002/btpr.1796.
Nitschke M., Costa S.G.V.A.O. Biosurfactants in food industry // Trends Food Sci. Technol. – 2007. – V. 18, No 5. – P. 252–259. – doi: 10.1016/j.tifs.2007.01.002.
Irfan-Maqsood M., Seddiq-Shams M. Rhamnolipids: Well-characterized glycolipids with potential broad applicability as biosurfactants // Ind. Biotechnol. – 2014. – V. 10, No 4. – P. 285–291. – doi: 10.1089/ind.2014.0003.
Takahashi M., Morita T., Fukuoka T., Imura T., Kitamoto D. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H2O2-induced oxidative stress in cultured human skin fibroblasts // J. Oleo Sci. – 2012. – V. 61, No 8. – P. 457–464. – doi: 10.5650/jos.61.457.
Jemil N., Ayed H.B., Manresa A., Nasri M., Hmidet N. Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1 // BMC Microbiol. – 2017. – V. 17, No 1. – Art. 144, P. 1–11. – doi: 10.1186/s12866-017-1050-2.
Zeraik A.E., Nitschke M. Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: Effect of temperature and hydrophobicity // Curr. Microbiol. – 2010. – V. 61, No 6. – P. 554–559. – doi: 10.1007/s00284-010-9652-z.
Luna J.M., Rufino R.D., Sarubbo L.A., Rodrigues L.R.M., Teixeira J.A.C., de Campos-Takaki G.M. Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995 // Curr. Microbiol. – 2011. – V. 62, No 5. – P. 1527–1534. – doi: 10.1007/s00284-011-9889-1.
Rufino R.D., Luna J.M., Sarubbo L.A., Rodrigues L.R.M., Teixeira J.A.C., Campos-Takaki G.M. Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988 // Colloids Surf., B. – 2011. – V. 84, No 1. – P. 1–5. – doi: 10.1016/j.colsurfb.2010.10.045.