Neurotoxic and neuroprotective effects of homocysteine and hydrogen sulfide
Yakovlev A.V, Kurmasheva E.D., Ishchenko Y., Giniatullin R., Sitdikova G.F. Age-dependent, subunit specific action of hydrogen sulfide on GluN1/2A and GluN1/2B NMDA receptors. Front. Cell. Neurosci., 2017, vol. 11, art. 375, pp. 1–12. doi: 10.3389/fncel.2017.00375.
Bukharaeva E.A., Shakirzyanova A., Khuzakhmetova V., Sitdikova G., Giniatullin R. Homocysteine aggravates ROS-induced depression of transmitter release from motor nerve terminals: potential mechanism of peripheral impairment in motor neuron diseases associated with hyperhomocysteinemia. Front. Cell. Neurosci., 2015, vol. 9, art. 391, pp. 1–8. doi: 10.3389/fncel.2015.00391.
Cai B., Gong D., Pan Z., Liu Y., Qian H., Zhang Y., Jiao J., Lu Y., Yang B. Large-conductance Ca2+-activated K+-currents blocked and impaired by homocysteine in human and rat mesenteric artery smooth muscle cells. Life Sci., 2007, vol. 80, no. 22, pp. 2060–2066. doi: 10.1016/j.lfs.2007.03.003.
Gaifullina A.S., Yakovlev A.V., Mustafina A.N., Weiger T.W., Hermann A., Sitdikova G.F. Homocysteine augments BK channel activity and decreases exocytosis of secretory granules in rat GH3 cells. FEBS Lett., 2016, vol. 590, no. 19, pp. 3375–3384. doi: 10.1002/1873-3468.12381.
Dodds L., Fell D.B., Dooley K.C., Armson B.A., Allen A.C., Nassar B.A., Perkins S., Joseph K.S. Effect of homocysteine concentration in early pregnancy on gestational hypertensive disorders and other pregnancy outcomes. Clin. Chem., 2008, vol. 54, no. 2, pp. 326–334. doi: 10.1373/clinchem.2007.097469.
Chung J.-Y., Sunwoo J.-S., Kim M.-W., Kim M. The neuroprotective effects of human growth hormone as a potential treatment for amyotrophic lateral sclerosis. Neural Regener. Res., 2015, vol. 10, no. 8, pp. 1201–1203. doi: 10.4103/1673-5374.162690.
Li C., Xia M., Abais J.M., Liu X., Li N., Boini K.M., Li P.L. Protective role of growth hormone against hyperhomocysteinemia-induced glomerular injury. Naunyn-Schmiedeberg’s Arch. Pharmacol., 2013, vol. 386, no. 6, pp. 551–561. doi: 10.1007/s00210-013-0848-1.
Kimura Y., Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J., 2004, vol. 18, no. 10, pp. 1165–1167. doi:10.1096/fj.04-1815fje.
Kimura Y., Goto Y., Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signaling, 2010, vol. 12, no. 1, pp. 1–13. doi: 10.1089/ars.2008.2282.
Wedmann R., Bertlein S., Macinkovic I., Böltz S., Miljkovic J.L., Muñoz L.E., Herrmann M., Filipovic M.R. Working with “H2S”: Facts and apparent artifacts. Nitric Oxide, 2014, vol. 41, pp. 85–96. doi: 10.1016/j.niox.2014.06.003.
Stipanuk M.H. Sulfur amino acid metabolism: Pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr., 2004, vol. 24, pp. 539–577. doi: 10.1146/annurev.nutr.24.012003.132418.
Robert K., Vialard F., Thiery E., Toyama K., Sinet P.M., Janel N., London J. Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J. Histochem. Cytochem., 2003, vol. 51, no. 3, pp. 363–371. doi: 10.1177/002215540305100311.
Kimura H. Production and physiological effects of hydrogen sulfide. Antioxid. Redox Signaling, 2014, vol. 20, no. 5, pp. 783–793. doi: 10.1089/ars.2013.5309.
Kuksis M., Smith P.M., Ferguson A.V. Hydrogen sulfide regulates cardiovascular function by influencing the excitability of subfornical organ neurons. PLoS One, 2014, vol. 9, no. 8, art. e105772, pp. 1–11. doi: 10.1371/journal.pone.0105772.
Feng X., Zhou Y.L., Meng X., Qi F.H., Chen W., Jiang X., Xu G.Y. Hydrogen sulfide increases excitability through suppression of sustained potassium channel currents of rat trigeminal ganglion neurons. Mol. Pain, 2013, vol. 9, no. 4, pp. 1–10. doi: 10.1186/1744-8069-9-4.
Chen L., Zhang J., Ding Y., Li H., Nie L., Yan X., Zhou H., Zheng Y. KATP channels of parafacial respiratory group (pFRG) neurons are involved in H2S-mediated central inhibition of respiratory rhythm in medullary slices of neonatal rats. Brain Res., 2013, vol. 1527, pp. 141–148. doi: 10.1016/j.brainres.2013.07.009.
Enokido Y., Suzuki E., Iwasawa K., Namekata K., Okazawa H., Kimura H. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J., 2005, vol. 19, no. 13, pp. 1854–1856. doi: 10.1096/fj.05-3724fje.
Rosenquist T.H., Finnell R.H. Genes, folate and homocysteine in embryonic development. Proc. Nutr. Soc., 2001, vol. 60, no. 1, pp. 53–61.
Li Y.L., Wu P.F., Chen J.G., Wang S., Han Q.Q., Li D., Wang W., Guam X.L., Li D., Long L.H., Huang J.G., Wang F. Activity-dependent sulfhydration signal controls N-Methyl-D-aspartate subtype glutamate receptor-dependent synaptic plasticity via increasing d-serine availability. Antioxid. Redox Signaling, 2017, vol. 27, no. 7, pp. 398–414. doi: 10.1089/ars.2016.6936.
Han Y., Qin J., Chang X., Yang Z., Tang X., Du J. Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem. Biophys. Res. Commun., 2005, vol. 327, no. 2, pp. 431–436. doi: 10.1016/j.bbrc.2004.12.028.
Kamat P.K., Kalani A., Tyagi N. Role of hydrogen sulfide in brain synaptic remodeling. Methods Enzymol., 2015, vol. 555, pp. 207–229. doi: 10.1016/bs.mie.2014.11.025.
Kimura H. Hydrogen sulfide: From brain to gut. Antioxid. Redox Signaling, 2010, vol. 12, no. 9, pp. 1111–1123. doi: 10.1089/ars.2009.2919.
Chang L.R., Liu J.P., Zhang N., Wang Y.J., Gao X.L., Wu Y. Different expression of NR2B and PSD-95 in rat hippocampal subregions during postnatal development. Microsc. Res. Tech., 2009, vol. 72, no. 7, pp. 517–524. doi: 10.1002/jemt.20708.
Gerasimova E.V., Sitdikova G.F., Zefirov A.L. Hydrogen sulfide as an endogenous modulator of mediator release in the frog neuromuscular synapse. Neurochem. J., 2008, vol. 2, nos. 1–2, pp. 120–126.
Sitdikova G.F., Gerasimova E.V., Khaertdinov N.N., Zefirov A.L. Role of cyclic nucleotides in effects of hydrogen sulfide on the mediator release in frog neuromuscular junction. Neurochem. J., 2009, vol. 3, no. 4, pp. 282–287. doi: 10.1134/S1819712409040072.
Sitdikova G., Zefirov A. Gasotransmitters in regulation of neuromuscular transmission. In: Hermann A., Sitdikova G.F., Weiger T.M. (Eds.) Gasotransmitters: Physiology and Pathophysiology. Berlin, Heidelberg, Springer, 2012, pp. 139–161.
Gerasimova E.V., Yakovleva O.V., Zefirov A.L., Sitdikova G.F. Role of ryanodine receptors in the effects of hydrogen sulfide on transmitter release from the frog motor nerve ending. Bull. Exp. Biol. Med., 2013, vol. 155, no. 1, pp. 11–13. doi: 10.1007/s10517-013-2067-7.
Ruehr M.L., Russell M.A., Ferguson D.G., Bhat M., Ma J., Damron D.S., Scott J.D., Bond M. Targeting of protein kinase A by muscle A kinase-anchoring protein (mAKAP) regulates phosphorylation and function of the skeletal muscle ryanodine receptor. J. Biol. Chem., 2003, vol. 278, no. 27, pp. 24831–24836. doi: 10.1074/jbc.M213279200.
Nagai Y., Tsugane M., Oka J., Kimura H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J., 2004, vol. 18, no. 3, pp. 557–559. doi: 10.1096/fj.03-1052fje.
García-Bereguía M.A., Samhan-Arias A.K., Martín-Romero F.J., Gutiérrez-Merino C. Hydrogen sulfide raises cytosolic calcium in neurons through activation L-type Ca2+-channels. Antioxid. Redox Signaling, 2008, vol. 10, no. 1. pp. 31–42. doi: 10.1089/ars.2007.1656.
Patacchini R., Santicioli P., Giuliani S., Maggi C.A. Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br. J. Pharmacol., 2004, vol. 142, no. 1, pp. 31–34. doi:10.1038/sj.bjp.0705764.
Gadalla M.M., Snyder S.H. Hydrogen sulfide as a gasotransmitter. J. Neurochem., 2010, vol. 113, no. 1, pp. 14–26. doi: 10.1111/j.1471-4159.2010.06580.x.
Duman J.G., Forte J.G. What is the role of SNARE proteins in membrane fusion? Am. J. Physiol., 2003, vol. 285, no. 2, pp. C237–C249. doi: 10.1152/ajpcell.00091.2003.
Mitrukhina O.B., Yakovlev A.V., Sitdikova G.F. The effects of hydrogen sulfide on the processes of exo and endocytosis of synaptic vesicles in the mouse motor nerve endings. Biochem. Moscow Suppl. Ser. A, 2013, vol. 7, no. 2, pp. 170–173. doi: 10.1134/S1990747812050121.
Sitdikova G.F., Yakovlev A.V., Odnoshivkina Y.G., Zefirov A.L. Effects of hydrogen sulfide on the exo- and endocytosis of synaptic vesicles in frog motor nerve endings. Neurochem. J., 2011, vol. 5, no. 4, pp. 245–250. doi: 10.1134/S1819712411040155.
Giniatullin A.R., Darios F., Shakirzyanova A., Davletov B., Giniatullin R. SNAP25 is a pre-synaptic target for the depressant action of reactive oxygen species on transmitter release. J. Neurochem., 2006, vol. 98, no. 6, pp. 1789–1797. doi: 10.1111/j.1471-4159.2006.03997.x.
Kuksis M., Ferguson A.V. Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ. J. Neurophysiol., 2015, vol. 114, no. 3, pp. 1641–1651. doi: 10.1152/jn.00252.2015.
Hermann A., Sitdikova G.F., Weiger T.M. Modulated by gaso- transmitters: BK channels. In: Hermann A. Sitdikova G.F., Weiger T.M. (Eds) Gasotransmitters: Physiology and Pathophysiology. Berlin, Heidelberg, Springer, 2012, pp. 163–201.
Sitdikova G.F., Fuchs R., Kainz V., Weiger T.M., Hermann, A. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S). Front. Physiol., 2014, vol. 5, art. 431, pp. 1–15. doi:10.3389/fphys.2014.00431.
Sitdikova G.F., Weiger T.M., Hermann A. Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch. - Eur. J. Physiol., 2010, vol. 459, pp. 389–397. doi: 10.1007/s00424-009-0737-0.
Mustafina A.N., Yakovlev A.V., Gaifullina A.S., Weiger T.M., Hermann A., Sitdikova G.F. Hydrogen sulfide induces hyperpolarization and decreases the exocytosis of secretory granules of rat GH3 pituitary tumor cells. Biochem. Biophys. Res. Commun., 2015, vol. 465, no. 4, pp. 825–831. doi: 10.1016/j.bbrc.2015.08.095.
Hermann A., Sitdikova G.F., Weiger T.M. Oxidative stress and maxi calcium-activated potassium (BK) channels. Biomolecules, 2015, vol. 5, no. 3, pp. 1870–1911. doi: 10.3390/biom5031870.
Sekiguchi F., Miyamoto Y., Kanaoka D., Ide H., Yoshida S., Ohkubo T., Kawabata A. Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Cav3.2-expressing HEK293 cells. Biochem. Biophys. Res. Commun., 2014, vol. 445, no. 1, pp. 225–229. doi: 10.1016/j.bbrc.2014.01.185.
Okubo K., Matsumura M., Kawaishi Y., Aoki Y., Matsunami M., Okawa Y., Sekiguchi F., Kawabata A. Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Cav3.2 and TRPA1 channels in mice. Br. J. Pharmacol., 2012, vol. 166, no. 5, pp. 1738–1743. doi: 10.1111/j.1476-5381.2012.01886.x.
Matsunami M., Tarui T., Mitani K., Nagasawa K., Fukushima O., Okubo K., Yoshida S., Takemura M., Kawabata A. Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut, 2009, vol. 58, no. 6, pp. 751–761. doi: 10.1136/gut.2007.144543.
Kawabata A., Ishiki T., Nagasawa K., Yoshida S., Maeda Y., Takahashi T., Sekiguchi F., Wada T., Inchida S., Nishikawa H. Hydrogen sulfide as a novel nociceptive messenger. Pain, 2007, vol. 132, nos. 1–2, pp. 74–81. doi: 10.1016/j.pain.2007.01.026.
Tang G., Wu L., Liang W., Wang R. Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol. Pharmacol., 2005, vol. 68, no. 6, pp. 1757–1764. doi: 10.1124/mol.105.017467.
Distrutti E., Sediari L., Mencarelli A., Renga B., Orlandi S., Antonelli E., Roviezzo F., Morelli A., Cirino G., Wallace J.L., Fiorucci S. Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating K. J. Pharmacol. Exp. Ther., 2006, vol. 316, no. 1, pp. 325–335. doi: 10.1124/jpet.105.091595.
Storti B., Di Rienzo C., Cardarelli F., Bizzarri R., Beltram F. Unveiling TRPV1 spatio-temporal organization in live cell membranes. PLoS One, 2015, vol. 10, no. 3, art. e0116900, pp. 1–17. doi: 10.1371/journal.pone.0116900.
Andersson D.A., Gentry C., Bevan S. TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide. PLoS One, 2012, vol. 7, no. 10, art. e46917, pp. 1–9. doi: 10.1371/journal.pone.0046917.
Koroleva K., Mustafina A., Yakovlev A., Hermann A., Giniatullin R., Sitdikova G. Receptor mechanisms mediating the pro-nociceptive action of hydrogen sulfide in rat trigeminal neurons and meningeal afferents. Front. Cell. Neurosci., 2017, vol. 11, art. 226, pp. 1–9. doi: 10.3389/fncel.2017.00226.
Pietri R., Román-Morales E., López-Garriga J. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid. Redox Signaling, 2011, vol. 15, no. 2, pp. 393–404. doi: 10.1089/ars.2010.3698.
Powell C.R., Dillon K.M., Matson J.B. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem. Pharmacol., 2018, vol. 149, pp. 110–123. doi: 10.1016/j.bcp.2017.11.014.
Greiner R., Pálinkás Z., Bäsell K., Becher D., Antelmann H., Nagy P. Polysulfides link H2S to protein thiol oxidation. Antioxid. Redox Signaling, 2013, vol. 19, no. 15, pp. 1749–1765. doi: 10.1089/ars.2012.5041.
Kabil O., Motl N., Banerjee R. H2S and its role in redox signaling. Biochim. Biophys. Acta, 2014, vol. 1844, no. 8, pp. 1355–1366. doi: 10.1016/j.bbapap.2014.01.002.
Shefa U., Kim M-S., Jeong N.Y., Jung J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid. Med. Cell. Longevity, 2018, vol. 2018, art. 1873962, pp. 1–17. doi: 10.1155/2018/1873962.
Zhang D., Du J., Tang C., Huang Y., Jin H. H2S-induced sulfhydration: Biological function and detection methodology. Front. Pharmacol., 2017, vol. 8, art. 608, pp. 1–13. doi: 10.3389/fphar.2017.00608.
Kumar M., Modi M., Sandhir R. Hydrogen sulfide attenuates homocysteine-induced cognitive deficits and neurochemical alterations by improving endogenous hydrogen sulfide levels. Biofactors, 2017, vol. 43, no. 3, pp. 434–450. doi: 10.1002/biof.1354.
White A.R., Huang X., Jobling M.F., Barrow C.J., Beyreuther K. Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: Possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J. Neurochem., 2001, vol. 76, no. 5, pp. 1509–1520. doi: 10.1046/j.1471-4159.2001.00178.x.
Whiteman M., Armstrong J.S., Chu S.H., Jia-Ling S., Wong B.S. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’. J Neurochem., 2004, vol. 90, no. 3, pp. 765–768. doi: 10.1111/j.1471-4159.2004.02617.x.
Ishrat T., Hoda M.N., Khan M.B., Yousuf S., Ahmad M., Khan M.M., Ahmad A., Islam F. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur. Neuropsychopharmacol., 2009, vol. 19, no. 9, pp. 636–647. doi: 10.1016/j.euroneuro.2009.02.002.
Aldini G., Dalle-Donne I., Facino R.M., Milzani A., Carini M. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med. Res. Rev., 2007, vol. 27, no. 6, pp. 817–868. doi: 10.1002/med.20073.
Li M., Zhang P., Wei H.J., Li M.H., Zou W., Li X., Gu H.F., Tang X.Q. Hydrogen sulfide ameliorates homocysteine-induced cognitive dysfunction by inhibition of reactive aldehydes involving upregulation of ALDH2. Int. J. of Neuropsychopharm., 2017, vol. 20, no. 4, pp. 305–315.
Li J.G., Chu J., Barrero C., Merali S., Praticò D. Homocysteine exacerbates β-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann. Neurol., 2014, vol. 75, no. 6, pp. 851–863. doi: 10.1002/ana.24145.
Sen U., Givvimani S., Abe O.A., Lederer E.D., Tyagi S.C. Cystathionine β-synthase and cystathionine γ-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation. Am. J. Physiol. Cell. Physiol., 2011 vol. 300, no. 1, pp. 155–163. doi: 10.1152/ajpcell.00143.2010.
Beard R.S.Jr., Bearden S.E. Vascular complications of cystathionine β-synthase deficiency: Future directions for homocysteine-to-hydrogen sulfide research. Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 300, no. 1, pp. H13–H26. doi: 10.1152/ajpheart.00598.2010.