A.D. Ivanova a, V.S. Kuzmin a,b
a Moscow State University, Moscow, 119991 Russia
b Pirogov Russian National Research Medical University, Moscow, 117997 Russia
Abstract
Thoracic (caval and pulmonary) vein myocardial tissue is considered as a source of ectopic activity capable of initiating atrial fibrillation. The reasons which underline thoracic vein proarrhythmicity may be related to the expression level of the inward rectifier potassium current (IK1) critical for stable resting membrane potential (RMP) maintenance. In the present study the effect of IK1 inhibition by chloroquine (5 ?M) on the membrane resting and action potentials (AP) were recorded in the superior caval, pulmonary veins and left atria tissue preparations. There were no differences in RMP level: the AP duration in veins was significantly longer than in the atrium under control conditions. The chloroquine application increased the AP duration greater in the vein myocardium as compared to the left atrium. The study results allow to suggest that the thoracic vein myocardium has a lower density of IK1 current relatively to the working atrial myocardium.
Keywords: action potential, thoracic vein myocardium, extracardiac myocardium, atrial fibrillation, inward rectifier potassium current, spontaneous automaticity
Acknowledgments. This study is supported by the Russian Foundation for Basic Research (project no. 17-04-01921-a).
References
1. Ito M., Yanaga T., Saeki K., Arita M., Ishihara M., Mashiba H. Studies on sino-caval conduction of the rabbit with microelectrodes. Jpn. J. Physiol., 1964, vol. 14, pp. 439–449.
2. Carrow R., Calhoun M.L. The extent of cardiac muscle in the great veins of the dog. Anat. Rec., 1964, vol. 150, no. 3, pp. 249–256. doi: 10.1002/ar.1091500306.
3. MacLeod D.P., Hunter E.G. The pharmacology of the cardiac muscle of the great veins of the rat. Can. J. Physiol. Pharmacol., 1967, vol. 45, no. 3, pp. 463–473.
4. Nathan H., Eliakim M. The junction between the left atriuni and the pulmonary veins an anatomic study of human hearts. Circulation, 1966, vol. 34, no. 3, pp. 412–422.
5. Brunton T.L., Fayrer J. Note on independent pulsation of the pulmonary veins and vena cava. Proc. R. Soc. London, 1876–1877, vol. 25, pp. 174–176.
6. Ito M., Arita M., Saeki K., Tanoue M., Fukushima I. Functional properties of sinocaval conduction. Jpn. J. Physiol., 1967, vol. 17, no. 2, pp. 174–189.
7. Haïssaguerre M., Jaïs P., Shah D.C., Takahashi A., Hocini M., Quiniou G., Garrigue S., Le Mouroux A., Le Métayer Ph., Clémenty J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med., 1998, vol. 339, pp. 659–666. doi: 10.1056/NEJM199809033391003.
8. Tsai C.-F., Tai C.-T., Hsieh M.H., Lin W.S., Yun W.S., Ueng K.C., Ding Y.A., Chang M.S., Chen S.A. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: Electrophysiological characteristics and results of radiofrequency ablation. Circulation, 2000, vol. 102, no. 1, pp. 67–74.
9. Chen Y.J., Chen S.A., Chen Y.C., Yeh H.I., Chang M.S., Lin C.I. Electrophysiology of single cardiomyocytes isolated from rabbit pulmonary veins: Implication in initiation of focal atrial fibrillation. Basic Res. Cardiol., 2002, vol. 97, no. 1, pp. 26–34.
10. Chen Y.J., Chen S.A., Chang M.S., Lin C.I. Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: Implication for the genesis of atrial fibrillation. Cardiovasc. Res., 2000, vol. 48, no. 2, pp. 265–273. doi: 10.1016/s0008-6363(00)00179-6.
11. Cheung D.W. Electrical activity of the pulmonary vein and its interaction with the right atrium in the guinea-pig. J. Physiol., 1980, vol. 314, pp. 445–456. doi: 10.1113/jphysiol.1981.sp013718.
12. Chen Y.-J., Chen Y.-Ch., Yeh H.-I., Lin Ch.-I., Chen S.-A. Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation, 2002, vol. 105, no. 22, pp. 2679–2685. doi: 10.1161/01.CIR.0000016822.96362.26.
13. Hibino H., Inanobe A., Furutani K., Murakami S., Findlay I., Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol. Rev., 2010, vol. 90, no. 1, pp. 291–366. doi: 10.1152/physrev.00021.2009.
14. Ivanova A.D., Kuzmin V.S., Rosenshtraukh L.V. β-Adrenergic stimulation induces pro-arrhythmic activity in the caval vein myocardial tissue. Dokl. Biol. Sci., 2017, vol. 476, no. 1, pp. 183–187. doi: 10.1134/S0012496617050027.
15. Egorov Y.V., Kuzʼmin V.S., Glukhov A.V., Rosenshtraukh L.V. Electrophysiological characteristics, rhythm, disturbances and conduction discontinuities under autonomic stimulation in the rat pulmonary vein myocardium. J. Cardiovasc. Electrophysiol., 2015, vol. 26, no. 10, pp. 1130–1139. doi: 10.1111/jce.12738.
16. Sizarov A., Anderson R.H., Christoffels V.M., Moorman A.F. Three-dimensional and molecular analysis of the venous pole of the developing human heart. Circulation, 2010, vol. 122, no. 8, pp. 798–807. doi: 10.1161/CIRCULATIONAHA.110.953844.
17. Jensen B., Boukens B.J.D., Wnag T., Moorman A.F.M., Christoffels V.M. Evolution of the sinus venosus from fish to human. J. Cardiovasc. Dev. Dis., 2014, vol. 1, no. 1, pp. 14–28. doi: 10.3390/jcdd1010014.
18. Christoffels V.M., Mommersteeg M.T., Trowe M.O., Prall O.W., de Gier-de Vries C., Soufan A.T., Bussen M., Schuster-Gossler K., Harvey R.P., Moorman A.F., Kispert A. Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ. Res., 2006, vol. 98, no. 12, pp. 1555–1563. doi: 10.1161/01.RES.0000227571.84189.65.
19. Mommersteeg M.T., Hoogaars W.M., Prall O.W., de Gier-de Vries C., Wiese C., Clout D.E., Papaioannou V.E., Brown N.A., Harvey R.P., Moorman A.F., Christoffels V.M. Molecular pathway for the localized formation of the sinoatrial node. Circ. Res., 2007, vol. 100, no. 3, pp. 354–362. doi: 10.1161/01.RES.0000258019.74591.b3.
20. Mommersteeg M.T., Brown N.A., Prall O.W., de Gier-de Vries C., Harvey R.P., Moorman A.F., Christoffels V.M. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ. Res., 2007, vol. 101, no. 9, pp. 902–909. doi: 10.1161/CIRCRESAHA.107.161182.
21. Postma A.V., Dekker L.R., Soufan A.T., Moorman A.F. Developmental and genetic aspects of atrial fibrillation. Trends Cardiovasc. Med., 2009, vol. 19, no. 4, pp. 123–130. doi: 10.1016/j.tcm.2009.07.003.
22. Nattel S., Quantz M.A. Pharmacological response of quinidine induced early afterdepolarisations in canine cardiac Purkinje fibres : Insights into underlying ionic mechanisms. Carsiovasc. Res., 1988, vol. 22, no. 11, pp. 808–817. doi: 10.1093/cvr/22.11.808.
Received
July 1, 2018
Ivanova Alexandra Dmitrievna, PhD Student, Department of Human and Animal Physiology
Moscow State University
Leninskie Gory, 1, Moscow, 119991 Russia
E-mail: ivanova.aleksandra.2012@post.bio.msu.ru
Kuzmin Vlad Stephanovich, Candidate of Biological Sciences, Assistant Professor, Department of Human and Animal Physiology; Researcher, Department of Physiology
Moscow State University
Leninskie Gory, 1, Moscow, 119991 Russia
Pirogov Russian National Research Medical University
ul. Ostrovitjanova, 1, Moscow, 117997 Russia
E-mail: ku290381@gmail.com
For citation: Ivanova A.D., Kuzmin V.S. Inhibition of inward rectifier potassium currents by chloroquine causes significant electrophysiological changes in the rat thoracic veins myocardium. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 4, pp. 645–653.
Для цитирования: Ivanova A.D., Kuzmin V.S. Inhibition of inward rectifier potassium currents by chloroquine causes significant electrophysiological changes in the rat thoracic veins myocardium // Учен. зап. Казан. ун-та. Сер. Естеств. науки. – 2018. – Т. 160, кн. 4. – С. 645–653.
Контент доступен под лицензией Creative Commons Attribution 4.0 License.