| Form of presentation | Conference proceedings in Russian journals and collections |
| Year of publication | 2025 |
| Язык | русский |
|
Arabov Mullosharaf Kurbonovich, author
|
|
- - -, author
|
| Bibliographic description in the original language |
Arabov M. K. Physics-Informed Neural Networks for Limit-Cycle Analysis in Nonlinear Dynamical Systems with Absolute-Value Nonlinearity // Materialy mezhdunarodnoy nauchnoy konferencii «Ufimskaya osennyaya matematicheskaya shkola» (g. Ufa, 1–5 oktyabrya 2025 g.). V 2 t. / otv. red. Z. Yu. Fazullin. — Ufa: Aeterna, 2025. — T. 2. — S. 102–104. |
| Annotation |
Материалы международной научной конференции «Уфимская осенняя математическая школа» |
| Keywords |
physics-informed neural networks, nonlinear dynamical
systems, limit cycles, absolute-value nonlinearity |
| The name of the journal |
Материалы международной научной конференции «Уфимская осенняя математическая школа»
|
| Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=317850&p_lang=2 |
| Resource files | |
|
|
Full metadata record  |
| Field DC |
Value |
Language |
| dc.contributor.author |
Arabov Mullosharaf Kurbonovich |
ru_RU |
| dc.contributor.author |
- - - |
ru_RU |
| dc.date.accessioned |
2025-01-01T00:00:00Z |
ru_RU |
| dc.date.available |
2025-01-01T00:00:00Z |
ru_RU |
| dc.date.issued |
2025 |
ru_RU |
| dc.identifier.citation |
Арабов М. К. Physics-Informed Neural Networks for Limit-Cycle Analysis in Nonlinear Dynamical Systems with Absolute-Value Nonlinearity // Материалы международной научной конференции «Уфимская осенняя математическая школа» (г. Уфа, 1–5 октября 2025 г.). В 2 т. / отв. ред. З. Ю. Фазуллин. — Уфа: Аэтерна, 2025. — Т. 2. — С. 102–104. |
ru_RU |
| dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=317850&p_lang=2 |
ru_RU |
| dc.description.abstract |
Материалы международной научной конференции «Уфимская осенняя математическая школа» |
ru_RU |
| dc.description.abstract |
We apply Physics-Informed Neural Networks (PINNs) to second-order
nonlinear dynamical systems with an absolute-value nonlinearity. The
focus is on detecting and quantitatively characterising limit cycles.
The PINN is trained using the L-BFGS quasi-Newton optimiser. Results are validated against numerical solvers and further analysed via
Fourier spectral analysis (FFT) of the time series, enabling the amplitude and frequency characteristics of the cycles to be assessed.
Keywords: physics-informed neural networks, nonlinear dynamical
systems, limit cycles, absolute-value nonlinearity |
ru_RU |
| dc.language.iso |
ru |
ru_RU |
| dc.subject |
physics-informed neural networks |
ru_RU |
| dc.subject |
nonlinear dynamical
systems |
ru_RU |
| dc.subject |
limit cycles |
ru_RU |
| dc.subject |
absolute-value nonlinearity |
ru_RU |
| dc.title |
Physics-Informed Neural Networks for Limit-Cycle Analysis in Nonlinear Dynamical Systems with Absolute-Value Nonlinearit |
ru_RU |
| dc.type |
Conference proceedings in Russian journals and collections |
ru_RU |
|