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YduMcknit yHUBEpCUTET HAYKW M TEXHOJOTHH coBMecTHO ¢ VHCTHTY-
toMm Matemaruku ¢ BIl YOUIL PAH exkeromHo, Haunnas ¢ 2012 r., nposo-
JUT MeKIyHapOIHble HAyJHble KOH(MEPEeHIINN, OCHOBHBIE TEMATUKN KOTO-
PBIX CBSA3aHBI CO CIMEKTPAJIbHOI Teopmneil, ¢ HeJIMHECHHBIM W KOMIIJIEKCHBIM
a"aau3oM, audepeHrnaIbHBIMI yPABHEHUAMI U MATEMATUIECKUM MOZe-
nuposBaHueM. Berbop Taknx HaAIpaBjeHMI ONPEIEsIsICa KaK aKTUBHOMN pa-
00TOIl B yKa3aHHBIX OBJIACTIX MHOTMX MaTeMaTHKOB m3 BamkoprocraHa,
B3aMMOIIPOHUKHOBEHNEM HAEH W METO0B CIEKTPAJIbHON TEeOpHH, HeJIMHe-
HOTO M KOMIUIEKCHOI'0 QHAJIN3a IIPH DEIIeHNN MHOTMX aKTYaJbHBIX 33a<
B YKa3aHHBIX 00JACTAX, TAK U COTPYIHUYIECTBOM C KOJIJIETaMW M3 MHOTHUX
HAy<HBIX IIeHTPoB Poccun u 3apybekbs.

B nmocnenune rompr 0COGEHHO aKTHBHBIM CTAJIO COTPYIHUTIECTBO B yKa-
3aHHBIX OOJIACTAX MATEMATHKHU C YIE€HBIMU U3 DPIJa HAYIHBIX M 06pazo-
BaTeJbHBIX OpraHu3amuii Y3b6exkucrana, Kazaxcrana u Tamxukucrana. Co
MHOTMME OPTaHN3AINsIMI 3aK/II0YeHbl COOTBeTCTBYIOMmue Jlorosopa o Ha-
VYHOM COTPYIHUYECTBE.

Hauwmnuas ¢ 2019 r. koudepenmnus mpuobpesia HOBBIM CTATYC, Tpeodpa3o-
BaBIIKACh B "YHUMCKYI0 OceHHIOIO MaTemMaTHdeckyio mkony". Teneps, Ha-
pAay ¢ 0BCYIKIeHNeM HOBEHIINX HAYYHBIX PE3YJbTATOB M OTKPBITHIX IPO-
671eM, BaxKHOE MeCTO B paboTe KOH(pEPEHITNH 3aHUMAT 0030pHbIE JIEKITHI
BEeAYIIUX yYEeHBIX JJIsi ACIIHPAHTOB U MOJIOIBIX yIEHBIX.

Hayunas mporpamma xoudepenmun YOMIII-25 oxBaTsiBaeT ciaemyio-
TFe HaIPaB/ICHUS:

® CIICKTPAJIbHAsA TEOPHUsd OIIEPATOPOB;

® KOMILJIEKCHBIN U (DYHKI[MOHAILHBIN aAHAIN3;

® HeJIMHEHHble yPaBHEHNU;

o nuddepennnaIbHble YPABHEHNS U UX IIPUIOKEHIS;

® MAaTEeMaTHUYIECKOe MOJCIMPOBAHUEC.
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PHYSICS-INFORMED NEURAL NETWORKS FOR
LIMIT-CYCLE ANALYSIS IN NONLINEAR DYNAMICAL
SYSTEMS WITH ABSOLUTE-VALUE NONLINEARITY
M.K. Arabov, MKArabov@kpfu.ru

VIIK 517.927

Ilpumenstorcs  dusndecku-uHGOPMUPOBAHHBIE HEHPOHHBIE  CETH
(PINNS) mis aHagn3a HEIUHEHHBIX JTUHAMUYECKUX CHACTEM BTODPOTO
MOPAIKA C MOIYJILHON HeauHeHHOCTHI0. OCHOBHOE BHUMAHNE YIEJICHO
BBIFBJICHUIO W KOJIWYECTBEHHON XapPaKTEPUCTUKE IIPEeJbHBIX ITHK-
0. Obyuenue ceru npoussonutcsa MeronoMm L-BFGS. Pesymprars
NPOBEPAIOTCS TUCCHHBIMIA METOMAMHU U AHAIUZUPYIOTCSI C IIOMOIIBIO
CIEKTPAJIBHOTO aHAN3d BpeMeHHBbIX panoB (duckperHoe mpeobpa-
soeanne ®ypre, FFT), 9To NO3BOJISET OIEHWBATH AMILUIUTYIHBIE U
YaCTOTHBIE XAPAKTEPUCTUKHU IIUKJIOB.

Karwesvie caoea: dbusnaecku MHGOPMUPOBAHHEIE HEHPOHHBIE CETH,
HeJIMHEHbIE [IUHAMUYECKUE CUCTEMBI, MIPEIETbHBIE TUKJIIbl, MOIYIh-
Has HEeJIMHEHHOCTb

Physics-Informed Neural Networks for Limit-Cycle Analysis
in Nonlinear Dynamical Systems with Absolute-Value Non-
linearity

We apply Physics-Informed Neural Networks (PINNs) to second-order
nonlinear dynamical systems with an absolute-value nonlinearity. The
focus is on detecting and quantitatively characterising limit cycles.
The PINN is trained using the L-BFGS quasi-Newton optimiser. Re-
sults are validated against numerical solvers and further analysed via
Fourier spectral analysis (FFT) of the time series, enabling the am-
plitude and frequency characteristics of the cycles to be assessed.
Keywords: physics-informed neural networks, nonlinear dynamical
systems, limit cycles, absolute-value nonlinearity

Second-order nonlinear dynamical systems with absolute-value nonlinearity
are described by the equation

2" +az' +bx+c|f(x,2) =0,

where f(z,z') may take the form 2’ — ¢(x,x’), A\—x or A—z’. For numerical
stability, the modulus is approximated by a smoothed function

|2 & ¢ (2) := V22 + 2 — ¢, e >0,
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which removes gradient discontinuities without introducing a constant bias.
The system in variables x and y = 2’ takes the form:

=y,
Y =—ay—bz—cof(z,y)).

To approximate the solution u(t) = [2(t), y(t)] ", a neural network uxx(t; )
is used. The loss function consists of three components:

L(0) = Lepg + Lic + Lyper,
where

% Z [(wi\IN(tz) - yNN(ti))2 + (ynn (t:) + aynn(ti) + bann (t:)+

i=1

LppE =

+C¢s(f($NN7yNN)))2],

Lic = (znn(to) — z0)? + (ynn(to) — o),
Lper = (zxnn(to) — znn(to + T)) + (ynn (to) — ynn(to + T))%,

where T is the assumed cycle period.

Training parameters. The calculations employed a fully connected
network with 4 hidden layers of 50 neurons each and tanh activation
function. The value of £ was set to 1073, Training was carried out using
L-BFGS until convergence, with a gradient norm threshold of 107°.

The method was tested for several parameter sets a,b,c, A with different
forms of f(x, ). In cases where the system admits a limit cycle, the neural
network correctly identifies it and reproduces the oscillation characteristics,
as confirmed by phase portraits and spectral analysis (FFT). Comparison
with numerical integration (ODEPACK [5]) shows high accuracy and
stability of the solutions.

Note. The proposed approach extends the methods presented in [6,7] and
demonstrates the effectiveness of PINNs for analysing oscillatory dynamics
of systems with absolute-value nonlinearity.
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