Form of presentation | Articles in international journals and collections |
Year of publication | 2024 |
Язык | английский |
|
Bikchentaev Ayrat Midkhatovich, author
|
|
Khadur Makhmud -, postgraduate kfu
|
Bibliographic description in the original language |
A.M. Bikchentaev, Mahmoud Khadour, Differences of idempotents in C*-algebras and the quantum Hall effect. II. Unbounded idempotents // Lobachevskii Journal of Mathematics, 2024, Vol. 45, No. 4, pp. 1825–1832. |
Annotation |
Let a von Neumann algebra M of operators act on a Hilbert space H, I be the unit of M, τ be a faithful semifinite normal trace on M. Let (M, τ) be the ∗-algebra of all τ-measurable operators and L1(M, τ) be the Banach space of all τ-integrable operators, P, Q ∈ S(M, τ) be idempotents. If P − Q ∈ L1(M, τ) then τ(P − Q) ∈ R. In particular, if A = A3 ∈ L1(M, τ), then τ(A) ∈ R. If P − Q ∈ L1(M, τ) and P Q ∈ M, then for all n ∈ N we have (P − Q)2n+1 ∈ L1(M, τ) and τ((P − Q)2n+1) = τ(P − Q) ∈ R. If A ∈ L2(M, τ) and U ∈ M is an isometry, then
||UA − A||22 ≤ 2||(I − U)AA∗||1. |
Keywords |
Hilbert space, von Neumann algebra, normal trace, measurable operator, idempotent, tripotent, quantum Hall effect |
The name of the journal |
Lobachevskii Journal of Mathematics
|
On-line resource for training course |
http://dspace.kpfu.ru/xmlui/bitstream/handle/net/184030/LOJM1825.pdf?sequence=1&isAllowed=y
|
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=302205&p_lang=2 |
Resource files | |
|
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Bikchentaev Ayrat Midkhatovich |
ru_RU |
dc.contributor.author |
Khadur Makhmud - |
ru_RU |
dc.date.accessioned |
2024-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2024-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2024 |
ru_RU |
dc.identifier.citation |
A.M. Bikchentaev, Mahmoud Khadour, Differences of idempotents in C*-algebras and the quantum Hall effect. II. Unbounded idempotents // Lobachevskii Journal of Mathematics, 2024, Vol. 45, No. 4, pp. 1825–1832. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=302205&p_lang=2 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
Let a von Neumann algebra M of operators act on a Hilbert space H, I be the unit of M, τ be a faithful semifinite normal trace on M. Let (M, τ) be the ∗-algebra of all τ-measurable operators and L1(M, τ) be the Banach space of all τ-integrable operators, P, Q ∈ S(M, τ) be idempotents. If P − Q ∈ L1(M, τ) then τ(P − Q) ∈ R. In particular, if A = A3 ∈ L1(M, τ), then τ(A) ∈ R. If P − Q ∈ L1(M, τ) and P Q ∈ M, then for all n ∈ N we have (P − Q)2n+1 ∈ L1(M, τ) and τ((P − Q)2n+1) = τ(P − Q) ∈ R. If A ∈ L2(M, τ) and U ∈ M is an isometry, then
||UA − A||22 ≤ 2||(I − U)AA∗||1. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
von Neumann algebra |
ru_RU |
dc.subject |
normal trace |
ru_RU |
dc.subject |
measurable operator |
ru_RU |
dc.subject |
idempotent |
ru_RU |
dc.subject |
tripotent |
ru_RU |
dc.subject |
quantum Hall effect |
ru_RU |
dc.title |
Differences of idempotents in C*-algebras and the quantum Hall effect. II. Unbounded idempotents |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|