Differences of Idempotents in C^* -algebras and the Quantum Hall Effect. II. Unbounded Idempotents

A. M. Bikchentaev1* and Mahmoud Khadour1**

(Submitted by E. A. Turilova)

¹Lobachevskii Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, 420008 Russia Received January 15, 2024; revised February 10, 2024; accepted March 10, 2024

Abstract—Let a von Neumann algebra \mathcal{M} of operators act on a Hilbert space \mathcal{H} , I be the unit of \mathcal{M} , τ be a faithful semifinite normal trace on \mathcal{M} . Let $S(\mathcal{M},\tau)$ be the *-algebra of all τ -measurable operators and $L_1(\mathcal{M},\tau)$ be the Banach space of all τ -integrable operators, $P,Q\in S(\mathcal{M},\tau)$ be idempotents. If $P-Q\in L_1(\mathcal{M},\tau)$ then $\tau(P-Q)\in\mathbb{R}$. In particular, if $A=A^3\in L_1(\mathcal{M},\tau)$, then $\tau(A)\in\mathbb{R}$. If $P-Q\in L_1(\mathcal{M},\tau)$ and $PQ\in \mathcal{M}$, then for all $n\in\mathbb{N}$ we have $(P-Q)^{2n+1}\in L_1(\mathcal{M},\tau)$ and $\tau((P-Q)^{2n+1})=\tau(P-Q)\in\mathbb{R}$. If $A\in L_2(\mathcal{M},\tau)$ and $A\in \mathcal{M}$ is an isometry, then $\|UA-A\|_2^2\leq 2\|(I-U)AA^*\|_1$.

DOI: 10.1134/S1995080224601346

Keywords and phrases: Hilbert space, von Neumann algebra, normal trace, measurable operator, idempotent, tripotent, quantum Hall effect.

1. INTRODUCTION

Let P and Q be idempotents on a Hilbert space \mathcal{H} . If X=P-Q is a trace-class operator, then the traces of all odd powers of X coincide:

$$\operatorname{tr}(P-Q) = \operatorname{tr}((P-Q)^{2n+1}) = \dim \ker(X-I) - \dim \ker(X+I) \in \mathbb{Z},\tag{1}$$

where I is the identity operator on \mathcal{H} . If X is a compact operator, then the right-hand side of (1) yields a natural "regularization" for the trace and shows that it is always an integer [1, 2]. In [3, Theorem 3] we established a C^* analogue of this statement: let φ be a trace on a unital C^* -algebra \mathcal{A} , let \mathfrak{M}_{φ} be the definition ideal of the trace φ and consider tripotents $P,Q\in\mathcal{A}$. If $P-Q\in\mathfrak{M}_{\varphi}$, then $\varphi(P-Q)\in\mathbb{R}$.

Pairs of idempotents play an important role in the quantum Hall effect [4]. For idempotents P, Q, and R with the trace-class operators P-Q and Q-R, from the equality $\operatorname{tr}(P-Q)=\operatorname{tr}(P-R)+\operatorname{tr}(R-Q)$ and (1), we obtain

$$\operatorname{tr}\left((P-Q)^{3}\right) = \operatorname{tr}\left((P-R)^{3}\right) + \operatorname{tr}\left((R-Q)^{3}\right). \tag{2}$$

The physical meaning of the additivity in Eq. (2) comes from the interpretation of $tr((P-Q)^3)$ as the Hall conductance. The additivity (cubic) Eq. (2) can be considered as a variant of the Ohm's law for the additivity of conductivity [5]. In [6, Theorem 1] we established a C^* analogue of the quantum Hall effect and proved the reality of trace of differences of wide class of symmetries from a unital C^* -algebra (see Corollaries 2 and 3 in [6]).

We generalize these results to unbounded idempotents, tripotents, and symmetries, affiliated to a von Neumann algebra (examples of such operators see in [7]). Let a von Neumann algebra \mathcal{M} of operators act on a Hilbert space \mathcal{H} , let τ be a faithful normal semifinite trace on \mathcal{M} . Let $S(\mathcal{M}, \tau)$ be the *-algebra of all τ -measurable operators, $S(\mathcal{M}, \tau)^{\mathrm{id}} = \{A \in S(\mathcal{M}, \tau) : A = A^2\}$, and let $L_1(\mathcal{M}, \tau)$ be

^{*}E-mail: Airat.Bikchentaev@kpfu.ru

^{**}E-mail: mahmoud.khadour.991@gmail.com

the Banach space of all τ -integrable operators. This paper continues the investigations of properties of τ -measurable operators, started in [7] and is an English translation of the Russian-language paper [8]. We obtain the following results: If $P,Q\in S(\mathcal{M},\tau)^{\mathrm{id}}$ and $P-Q\in L_1(\mathcal{M},\tau)$, then $\tau(P-Q)\in\mathbb{R}$ (Theorem 1). If $A=A^3\in L_1(\mathcal{M},\tau)$, then $\tau(A)\in\mathbb{R}$ (Corollary 1). Let $A,B\in S(\mathcal{M},\tau)$ be tripotents. If $A-B\in L_1(\mathcal{M},\tau)$ and $A+B\in \mathcal{M}$, then $\tau(A-B)\in\mathbb{R}$ (Corollary 2). Let $U,V\in S(\mathcal{M},\tau)$ be symmetries $(U^2=I)$. If $U-V\in L_1(\mathcal{M},\tau)$, then $\tau(U-V)\in\mathbb{R}$ (Corollary 4). Let $P,Q\in S(\mathcal{M},\tau)^{\mathrm{id}}$ with $P-Q\in L_1(\mathcal{M},\tau)$ and $PQ\in \mathcal{M}$. Then, for all $n\in\mathbb{N}$ we have $(P-Q)^{2n+1}\in L_1(\mathcal{M},\tau)$ and $\tau((P-Q)^{2n+1})=\tau(P-Q)\in\mathbb{R}$ (Theorem 2). If $P,Q,R\in S(\mathcal{M},\tau)^{\mathrm{id}}$ with $P-Q,Q-R\in L_1(\mathcal{M},\tau)$ and operators PQ,QR,PR lie in \mathcal{M} , then $\tau((P-R)^{2n+1})=\tau((P-Q)^{2n+1})+\tau((Q-R)^{2n+1})$ for all $n\in\mathbb{N}$ (Corollary 6). If $A=A^2\in L_2(\mathcal{M},\tau)$ and $Re(A)\geq sA^*A-(s-1)AA^*$ for some $s\in\mathbb{R}$, then A is a projection (Corollary 9). If $A\in L_2(\mathcal{M},\tau)$ and $U\in \mathcal{M}$ is a isometry, then $||UA-A||_2^2\leq 2||(I-U)AA^*||_1$ (Theorem 5).

2. NOTATION AND DEFINITIONS

Let a von Neumann algebra \mathcal{M} of operators act on a Hilbert space \mathcal{H} , I be the unit of \mathcal{M} , let $\mathcal{M}^{\operatorname{pr}}$ be the lattice of projections $(P=P^2=P^*)$ in \mathcal{M} and $P^\perp=I-P$ for $P\in\mathcal{M}^{\operatorname{pr}}$, let \mathcal{M}^+ be the cone of all positive operators in \mathcal{M} . An operator $U\in\mathcal{M}$ is called an *isometry*, if $U^*U=I$; unitary, if $U^*U=UU^*=I$.

A mapping $\varphi: \mathcal{M}^+ \to [0, +\infty]$ is called a trace, if $\varphi(X+Y) = \varphi(X) + \varphi(Y)$, $\varphi(\lambda X) = \lambda \varphi(X)$ for all $X, Y \in \mathcal{M}^+$, $\lambda \geq 0$ (moreover, $0 \cdot (+\infty) \equiv 0$); $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathcal{M}$. A trace φ is called (see [9, Chap. V, § 2])

- faithful, if $\varphi(X) > 0$ for all $X \in \mathcal{M}^+, X \neq 0$;
- normal, if $X_i \uparrow X(X_i, X \in \mathcal{M}^+) \Rightarrow \varphi(X) = \sup \varphi(X_i)$;
- semifinite, if $\varphi(X) = \sup{\{\varphi(Y) : Y \in \mathcal{M}^+, Y \leq X, \varphi(Y) < +\infty\}}$ for every $X \in \mathcal{M}^+$.

An operator on \mathcal{H} (not necessarily bounded or densely defined) is said to be *affiliated to the von Neumann algebra* \mathcal{M} if it commutes with any unitary operator from the commutant \mathcal{M}' of the algebra \mathcal{M} . Let τ be a faithful normal semifinite trace on \mathcal{M} . A closed operator X, affiliated to \mathcal{M} and possesing a domain $\mathfrak{D}(X)$ everywhere dense in \mathcal{H} is said to be τ -measurable if, for any $\varepsilon > 0$, there exists a projection $P \in \mathcal{M}^{\operatorname{pr}}$ such that $P\mathcal{H} \subset \mathfrak{D}(X)$ and $\tau(P^{\perp}) < \varepsilon$. The set $S(\mathcal{M}, \tau)$ of all τ -measurable operators is a *-algebra under passage to the adjoint operator, multiplication by a scalar, and operations of strong addition and multiplication resulting from the closure of the ordinary operations [10, Chap. IX].

Let \mathcal{L}^+ and \mathcal{L}^h denote the positive and Hermitian parts of a family $\mathcal{L} \subset S(\mathcal{M}, \tau)$, respectively. We denote by \leq the partial order in $S(\mathcal{M}, \tau)^h$ generated by its proper cone $S(\mathcal{M}, \tau)^+$. If $X \in S(\mathcal{M}, \tau)$ and X = U|X| is the polar decomposition of X, then $U \in \mathcal{M}$ and $|X| = \sqrt{X^*X} \in S(\mathcal{M}, \tau)^+$.

An operator $A \in S(\mathcal{M}, \tau)$ is called an *idempotent*, if $A^2 = A$; a *tripotent*, if $A^3 = A$; a *symmetry*, if $A^2 = I$. Denote by [A, B] = AB - BA the commutator of operators $A, B \in S(\mathcal{M}, \tau)$.

The generalized singular value function $\mu(\cdot;X):t\to\mu(t;X)$ of the operator X is defined by setting

$$\mu(t;X) = \inf\{||XP||: P \in \mathcal{M}^{\operatorname{pr}} \text{ and } \tau(P^{\perp}) \le t\}, \quad t > 0.$$

It is a non-increasing right-continuous function, and if $A \in S(\mathcal{M}, \tau)^{\mathrm{id}}$, then $\mu(t; A) \in \{0\} \cup [1, +\infty)$ for all t > 0 [11, Theorem 3.3].

Let m be the linear Lebesgue measure on \mathbb{R} . Noncommutative Lebesgue L_p -space $(0 , assosiated with <math>(\mathcal{M}, \tau)$, may be defined as

$$L_p(\mathcal{M}, \tau) = \{ X \in S(\mathcal{M}, \tau) : \mu(\cdot; X) \in L_p(\mathbb{R}^+, m) \}$$

with the F-norm (norm for $1 \leq p < \infty$) $||X||_p = ||\mu(\cdot;X)||_p$, $X \in L_p(\mathcal{M},\tau)$. The extension of τ to the unique linear functional on the whole space $L_1(\mathcal{M},\tau)$ we denote by the same letter τ . A linear subspace $\mathcal{E} \subset S(\mathcal{M},\tau)$ is called an *ideal space* on (\mathcal{M},τ) , if

1.
$$X \in \mathcal{E} \Rightarrow X^* \in \mathcal{E}$$
;

2. $X \in \mathcal{E}, Y \in S(\mathcal{M}, \tau)$ and $|Y| \leq |X| \Rightarrow Y \in \mathcal{E}$.

Such are, for example, the algebra \mathcal{M} , the collection of all elementary operators $\mathcal{F}(\mathcal{M},\tau)$ and $L_p(\mathcal{M},\tau)$ for $0 . For every ideal space <math>\mathcal{E}$ on (\mathcal{M},τ) we have $\mathcal{M}\mathcal{E}\mathcal{M} \subset \mathcal{E}$ [12, Lemma 5]. An ideal space \mathcal{E} on (\mathcal{M},τ) , equipped with an F-norm $||\cdot||_{\mathcal{E}}$, is called an F-normed ideal space on (\mathcal{M},τ) , if

- 1. $||X||_{\mathcal{E}} = ||X^*||_{\mathcal{E}}$ for all $X \in \mathcal{E}$;
- 2. $X, Y \in \mathcal{E}$ and $|Y| \leq |X| \Rightarrow ||Y||_{\mathcal{E}} \leq ||X||_{\mathcal{E}}$ (see [13, 14]).

If $\mathcal{M} = \mathcal{B}(\mathcal{H})$, the *-algebra of all bounded linear operators on \mathcal{H} , and $\tau = \text{tr}$ is the canonical trace, then $S(\mathcal{M}, \tau)$ coincides with $\mathcal{B}(\mathcal{H})$, the space $L_p(\mathcal{M}, \tau)$ coincides with the Shatten-von Neumann *-ideal $\mathfrak{S}_p(\mathcal{H})$ of compact operators in $\mathcal{B}(\mathcal{H})$ and

$$\mu(t;X) = \sum_{n=1}^{\infty} s_n(X)\chi_{[n-1,n)}(t), \quad t > 0,$$

where $\{s_n(X)\}_{n=1}^{\infty}$ is the sequence of s-numbers of the operator X; χ_A is the indicator function of the set $A \subset \mathbb{R}$.

If \mathcal{M} is Abelian (i.e., commutative), then $\mathcal{M} \simeq L^\infty(\Omega, \Sigma, \nu)$ and $\tau(f) = \int_\Omega f \mathrm{d} \, \nu$, where (Ω, Σ, ν) is a localized measure space, the *-algebra $S(\mathcal{M}, \tau)$ coincides with the algebra of all complex measurable functions f on (Ω, Σ, ν) , bounded everywhere but for a set of finite measure. The function $\mu(t; f)$ coincides with the nonincreasing rearrangement of the function |f|; see properties of such rearrangements in [15].

3. DIFFERENCES OF UNBOUNDED IDEMPOTENTS AND A TRACE

Lemma 1 ([10], Chap. IX, Theorem 2.13). If $A \in \mathcal{M}$ and $B \in L_1(\mathcal{M}, \tau)$, then $AB, BA \in L_1(\mathcal{M}, \tau)$. **Lemma 2** [16]. If $A, B \in S(\mathcal{M}, \tau)$ and $AB, BA \in L_1(\mathcal{M}, \tau)$, then $\tau(AB) = \tau(BA)$.

Lemma 3 ([17], Theorem 2.23). For every $P = P^2 \in S(\mathcal{M}, \tau)$ there exists the unique representation $P = \tilde{P} + Z$, where $\tilde{P} \in \mathcal{M}^{pr}$ and a nilpotent Z belongs to $S(\mathcal{M}, \tau)$ with $Z^2 = 0$, moreover, $Z\tilde{P} = 0$, $\tilde{P}Z = Z$.

Theorem 1. If $P, Q \in S(\mathcal{M}, \tau)^{id}$ and $P - Q \in L_1(\mathcal{M}, \tau)$, then $\tau(P - Q) \in \mathbb{R}$.

Proof. Let $P = \tilde{P} + Z$, $Q = \tilde{Q} + T$ be representations of Lemma 3 for $P, Q \in S(\mathcal{M}, \tau)^{\mathrm{id}}$. By Lemma 1, we have

$$\tilde{P} - \tilde{Q}\tilde{P} = (P - Q)\tilde{P} - \tilde{Q}(P - Q)\tilde{P} \in L_1(\mathcal{M}, \tau).$$

It can be analogously be verified that $\tilde{Q} - \tilde{P}\tilde{Q} \in L_1(\mathcal{M}, \tau)$. Therefore,

$$\tilde{P} - \tilde{Q} = \tilde{P} - \tilde{Q}\tilde{P} - (\tilde{Q} - \tilde{P}\tilde{Q})^* \in L_1(\mathcal{M}, \tau)$$

and $Z-T=P-Q-(\tilde{P}-\tilde{Q})\in L_1(\mathcal{M},\tau)$. According Lemma 1 operators

$$T\tilde{P} = (T-Z)\tilde{P}, \quad Z\tilde{Q} = (Z-T)\tilde{Q}, \quad Z-\tilde{P}T = \tilde{P}(Z-T), \quad \tilde{Q}Z-T = \tilde{Q}(Z-T)$$

lie in $L_1(\mathcal{M}, \tau)$, hence, $\tilde{Q}Z - \tilde{P}T = Z - \tilde{P}T + (\tilde{Q}Z - T) - (Z - T) \in L_1(\mathcal{M}, \tau)$. Therefore,

$$\tilde{P}T - T = \tilde{Q}Z - T - (\tilde{Q}Z - \tilde{P}T) \in L_1(\mathcal{M}, \tau).$$

By Lemmas 1 and 2, we have $0 = \tau([Z - T, \tilde{Q}]) = \tau(Z\tilde{Q} - \tilde{Q}Z + T)$. Since the operators

$$(\tilde{P} - \tilde{Q})T = \tilde{P}T - T, \quad T(\tilde{P} - \tilde{Q}) = T\tilde{P}$$

lie in $L_1(\mathcal{M}, \tau)$, by Lemma 2, with $A = \tilde{P} - \tilde{Q}$, B = T we obtain

$$\tau(\tilde{P}T - T) = \tau(T\tilde{P}). \tag{3}$$

Since $0 = \tau([Z-T,\tilde{P}]) = \tau(-T\tilde{P}-Z+\tilde{P}T)$, from (3) we have $0 = \tau(-T+\tilde{P}T-T\tilde{P}) = \tau(Z-T+(-Z+\tilde{P}T-T\tilde{P}))$ $= \tau(Z-T)+\tau(-Z+\tilde{P}T-T\tilde{P}) = \tau(Z-T).$

Thus, $\tau(P-Q) = \tau(\tilde{P}-\tilde{Q}) + \tau(Z-T) = \tau(\tilde{P}-\tilde{Q}) \in \mathbb{R}$, since the operator $\tilde{P}-\tilde{Q}$ is selfadjoint. \square **Corollary 1.** If $A=A^3 \in L_1(\mathcal{M},\tau)$, then $\tau(A) \in \mathbb{R}$.

Proof. Every tripotent $(A = A^3)$ from an arbitrary algebra is the difference of two idempotents from this algebra [18, Proposition 1].

Note that Corollary 1 simultaneously reinforces both Corollary 2.31 from [17] (here we get rid of superfluous condition $A - A^2 \in \mathcal{M}$) and Corollary 3.13 from [7] (here we get rid of superfluous condition $A^2 \in L_1(\mathcal{M}, \tau)$).

Corollary 2. Assume that $A, B \in S(\mathcal{M}, \tau)$ are tripotents. If $A - B \in L_1(\mathcal{M}, \tau)$ and $A + B \in \mathcal{M}$, then $\tau(A - B) \in \mathbb{R}$.

Proof. Let $A=P_1-Q_1, B=P_2-Q_2$ be the representations from [18, Proposition 1], i.e. $P_k, Q_k \in S(\mathcal{M},\tau)^{\mathrm{id}}$ and $P_kQ_k=Q_kP_k=0$ for k=1,2. It seems clear that the operators $A^2=P_1+Q_1$ and $B^2=P_2+Q_2$ lie in $S(\mathcal{M},\tau)^{\mathrm{id}}$. Since the operator $A-B=P_1-Q_1-P_2+Q_2$ lies in $L_1(\mathcal{M},\tau)$, by Lemma 1, the operator

$$A^{2} - B^{2} = \frac{1}{2}((A+B)(A-B) + (A-B)(A+B)) = P_{1} + Q_{1} - P_{2} - Q_{2}$$

also lies in $L_1(\mathcal{M}, \tau)$. Then, the operators

$$P_1 - P_2 = \frac{1}{2}(A - B + A^2 - B^2), \quad Q_2 - Q_1 = \frac{1}{2}(A - B - (A^2 - B^2))$$

belong to $L_1(\mathcal{M}, \tau)$ and $\tau(P_1 - P_2), \tau(Q_2 - Q_1) \in \mathbb{R}$ according to Theorem 1. Thus,

$$\tau(A-B) = \tau(P_1 - Q_1 - P_2 + Q_2) = \tau(P_1 - P_2) + \tau(Q_2 - Q_1) \in \mathbb{R}$$

and the assertion is proved.

Corollary 3. Let $P \in S(\mathcal{M}, \tau)^{id}$ and $P = \tilde{P} + Z$ be representation of Lemma 3. We have the equivalence

$$P \in L_1(\mathcal{M}, \tau) \iff \tilde{P}, Z \in L_1(\mathcal{M}, \tau),$$

and in this case $\tau(P) = \tau(\tilde{P}) = \tau(\sqrt{|P|}|P^*|\sqrt{|P|}) = \tau(P^*) \in \mathbb{R}^+.$

Proof. If $P \in L_1(\mathcal{M}, \tau)$, then $P\tilde{P} = \tilde{P} \in L_1(\mathcal{M}, \tau)$, by Lemma 1, and the operator $Z = P - \tilde{P}$ lies in $L_1(\mathcal{M}, \tau)$. From Theorem 1 for Q = 0, we obtain $\tau(P) = \tau(\tilde{P})$; hence, $\tau(Z) = \tau(P - \tilde{P}) = 0$. We have $P = |P^*| |P|$ [7, Theorem 3.3] and $\tau(P) = \tau(\sqrt{|P|}|P^*|\sqrt{|P|})$ [7, Corollary 3.4]. In particular, $\tau(P^*) = \overline{\tau(P)} = \tau(\tilde{P}) = \tau(P) \in \mathbb{R}^+$.

Corollary 4. Let $U, V \in S(\mathcal{M}, \tau)$ be symmetries. If $U - V \in L_1(\mathcal{M}, \tau)$, then $\tau(U - V) \in \mathbb{R}$.

Proof. The formula U = 2P - I ($P \in S(\mathcal{M}, \tau)^{\mathrm{id}}$) establishes a bijection between $S(\mathcal{M}, \tau)^{\mathrm{id}}$ and the set of all symmetries from $S(\mathcal{M}, \tau)$.

Corollary 5. Let $\tau(I) < +\infty$ and $P, Q \in S(\mathcal{M}, \tau)^{id}$. If $P + Q \in L_1(\mathcal{M}, \tau)$, then $\tau(P + Q) = \tau(\tilde{P}) + \tau(Q) = \tau(\tilde{P}) + \tau(Q) \in \mathbb{R}^+$.

Proof. Since $P+Q-I=P-Q^{\perp}\in L_1(\mathcal{M},\tau)$, by Theorem 1, we have

$$\begin{split} \tau(P+Q) &= \tau(P+Q-I) + \tau(I) = \tau(P-Q^{\perp}) + \tau(I) \\ &= \tau\Big(\tilde{P}-\widetilde{Q^{\perp}}\Big) + \tau(I) = \tau(\tilde{P}) + \tau\Big(I-\widetilde{Q^{\perp}}\Big) = \tau(\tilde{P}) + \tau\Big(\Big(\widetilde{Q^{\perp}}\Big)^{\perp}\Big) \in \mathbb{R}^{+}. \end{split}$$

On the other hand, $\tilde{P} + \tilde{Q} \in L_1(\mathcal{M}, \tau)$, so, $Z + T = P + Q - (\tilde{P} + \tilde{Q}) \in L_1(\mathcal{M}, \tau)$. Then, the operators

$$T\tilde{P}=(Z+T)\tilde{P}, \quad Z\tilde{Q}=(Z+T)\tilde{Q}, \quad Z+\tilde{P}T=\tilde{P}(Z+T), \quad T+\tilde{Q}Z=\tilde{Q}(Z+T)$$

lie in $L_1(\mathcal{M}, \tau)$. Therefore,

$$\tilde{Q}Z + \tilde{P}T = (Z + \tilde{P}T) + (\tilde{Q}Z + T) - (Z + T) \in L_1(\mathcal{M}, \tau)$$

and $\tilde{P}T - T = (\tilde{Q}Z + \tilde{P}T) - (\tilde{Q}Z + T) \in L_1(\mathcal{M}, \tau)$. Since $(\tilde{P} - \tilde{Q})T = \tilde{P}T - T \in L_1(\mathcal{M}, \tau)$ and $T(\tilde{P} - \tilde{Q}) = T\tilde{P} \in L_1(\mathcal{M}, \tau)$, equation (3) holds true via Lemma 2 with $A = \tilde{P} - \tilde{Q}$, B = T. Hence,

$$\tau(Z+\tilde{P}T)=\tau(\tilde{P}(Z+T))=\tau((Z+T)\tilde{P})=\tau(T\tilde{P})=\tau(\tilde{P}T-T)$$

according to Lemma 2 with $A = \tilde{P}, B = Z + T$ and $\tau(Z + \tilde{P}T - (\tilde{P}T - T)) = \tau(Z + T) = 0$. Thus, $\tau(P + Q) = \tau(\tilde{P}) + \tau(\tilde{Q})$ and $\tau\left(\left(\widetilde{Q^{\perp}}\right)^{\perp}\right) = \tau(\tilde{Q})$.

Example 1. Let $\tau(I) < +\infty$ and an idempotent $P \in S(\mathcal{M}, \tau)^{\mathrm{id}}$ be represented as the sum $P = \tilde{P} + Z$ by Lemma 3. Since $\tilde{P} \in L_1(\mathcal{M}, \tau)$, we have $P \in L_1(\mathcal{M}, \tau) \Leftrightarrow Z \in L_1(\mathcal{M}, \tau)$. Examples of such unbounded idempotents are [7, Example 3.2] and [17, Example 2.4]. Let $Z \notin L_1(\mathcal{M}, \tau)$ and $Q = P^{\perp}$. Then, $P + Q = I \in L_1(\mathcal{M}, \tau)$, but $\{P, Q\} \cap L_1(\mathcal{M}, \tau) = \emptyset$ (cf. with item (ii) of Lemma 3 from [19]).

Theorem 2. Let $P, Q \in S(\mathcal{M}, \tau)^{id}$ with $P - Q \in L_1(\mathcal{M}, \tau)$ and $PQ \in \mathcal{M}$. Then, for all $n \in \mathbb{N}$ we have $(P - Q)^{2n+1} \in L_1(\mathcal{M}, \tau)$ and $\tau((P - Q)^{2n+1}) = \tau(P - Q) \in \mathbb{R}$.

Proof. We may easily verify by induction that

$$(P-Q)^{2n+1} = P - Q + \lambda_1(PQP - QPQ) + \dots + \lambda_n(\underbrace{PQP \dots QP}_{2n+1} - \underbrace{QPQ \dots PQ}_{2n+1})$$

with some $\lambda_k \in \mathbb{Z}$, k = 1, 2, ..., n, see step 1 of the proof of Theorem 1 from [6]. By Lemma 1, the operators PQP - QPQ = PQ(P-Q) + (P-Q)PQ and PQ - QPQ = (P-Q)PQ lie in $L_1(\mathcal{M}, \tau)$. Since $\tau([P-Q, PQ]) = 0$, see Lemma 2, we have

$$\tau(PQP - QPQ) = \tau(PQP - QPQ + [P - Q, PQ]) = \tau(PQ - OPQ). \tag{4}$$

For operators A = PQ, B = P - QP we have $AB = 0 \in L_1(\mathcal{M}, \tau)$ and $BA = PQ - OPQ \in L_1(\mathcal{M}, \tau)$. Therefore, $0 = \tau(0) = \tau(AB) = \tau(BA)$ via Lemma 2. Thus, from (4) we obtain $\tau(PQP - QPQ) = 0$. Now, we apply the mathematical induction. Consider a number $n \ge 2$ and an operator

$$X := \underbrace{PQP \cdots QP}_{2n-1} - \underbrace{QPQ \cdots PQ}_{2n-1} \in L_1(\mathcal{M}, \tau)$$

with $\tau(X) = 0$. Then, the operators

$$\underbrace{PQP\cdots QP}_{2n+1} - \underbrace{PQP\cdots PQ}_{2n} = PQ\cdot X, \quad Y := \underbrace{PQP\cdots QP}_{2n+1} - \underbrace{QPQ\cdots PQ}_{2n+1} = PQ\cdot X + X\cdot PQ$$

lie in $L_1(\mathcal{M}, \tau)$ according to Lemma 1. For the operators

$$A_1 := PQ, \quad B_1 := \underbrace{PQP \cdots QP}_{2n-1} - \underbrace{QPQ \cdots QP}_{2n}$$

we have $A_1B_1=0\in L_1(\mathcal{M},\tau)$ and

$$B_1A_1 = \underbrace{PQP\cdots PQ}_{2n} - \underbrace{QPQ\cdots PQ}_{2n+1} = X \cdot PQ \in L_1(\mathcal{M}, \tau).$$

Therefore, $\tau(B_1A_1) = \tau(A_1B_1) = \tau(0) = 0$ by Lemma 2. Thus,

$$\tau(Y) = \tau(Y + B_1 A_1) = \tau(\underbrace{PQP \cdots QP}_{2n+1} - \underbrace{PQP \cdots PQ}_{2n}).$$

Since $(PQ)^n \in \mathcal{M}$ and $P - Q \in L_1(\mathcal{M}, \tau)$, the operator

$$Z:=[(PQ)^n,P-Q]=\underbrace{PQP\cdots QP}_{2n+1}-2\underbrace{PQP\cdots PQ}_{2n}+\underbrace{QPQ\cdots PQ}_{2n+1}$$

belongs to $L_1(\mathcal{M}, \tau)$. Hence, $\tau(Z) = 0$ via Lemma 2 with $A_2 = (PQ)^n$ and $B_2 = P - Q$. Since $0 = \tau(Z) = \tau(Y - B_1A_1)$ and $\tau(B_1A_1) = 0$, we have $\tau(Y) = 0$. Now $\tau((P - O)^{2n+1}) = \tau(P - O) \in \mathbb{R}$ by Theorem 1.

Corollary 6. If $P, Q, R \in S(\mathcal{M}, \tau)^{id}$ with $P - Q, Q - R \in L_1(\mathcal{M}, \tau)$ and operators PQ, QR, $PR \in \mathcal{M}$, then $\tau\left((P - R)^{2n+1}\right) = \tau\left((P - Q)^{2n+1}\right) + \tau\left((Q - R)^{2n+1}\right)$ for all $n \in \mathbb{N}$.

Corollary 7. Let $U, V, W \in S(\mathcal{M}, \tau)$ be symmetries with $U - V, V - W \in L_1(\mathcal{M}, \tau)$ and operators $UV + U + V, UW + U + W, VW + V + W \in \mathcal{M}$. Then,

$$\tau ((U - W)^{2n+1}) = \tau ((U - V)^{2n+1}) + \tau ((V - W)^{2n+1})$$

for all $n \in \mathbb{N}$.

Proof. Let U=2P-I, V=2Q-I and W=2R-I with $P,Q,R\in S(\mathcal{M},\tau)^{\mathrm{id}}$. Then, U-W=2(P-R) and, according to Corollary 6 for every $n\in\mathbb{N}$, we have

$$\tau((U-W)^{2n+1}) = 2^{2n+1}\tau\left((P-R)^{2n+1}\right) = 2^{2n+1}\left(\tau\left((P-Q)^{2n+1}\right) + \tau\left((Q-R)^{2n+1}\right)\right)$$
$$= \tau\left((U-V)^{2n+1}\right) + \tau\left((V-W)^{2n+1}\right).$$

Theorem 3. Let an operator $P \in S(\mathcal{M}, \tau)^{id}$. Then,

(i) $|P| = |P|P = P^*|P|$;

(ii) if $P^* = \tilde{P} + Z$ is the representation of Lemma 3, then $|P| \ge \tilde{P}$ and $|P| \ge |Z^*|$.

Proof. (i) Let P = U|P| be the polar decomposition of the operator P. Then, $P^* = U^*|P^*|$ is the polar decomposition of the operator P^* and $U^*U|P| = |P|$. Since $P = |P^*||P|$ [7, Theorem 3.3], left multiplying both parts of the equality $U|P| = |P^*||P|$ by the operator U^* , allows us to conclude that $|P| = P^*|P|$. Passing to adjoint operators, we obtain $|P| = (P^*|P|)^* = |P|P$.

(ii) We have $0=Z\tilde{P}=(Z\tilde{P})^*=\tilde{P}Z^*$ and $|P|=\sqrt{(\tilde{P}+Z)(\tilde{P}+Z)^*}=\sqrt{\tilde{P}+ZZ^*}$. Since $\tilde{P},ZZ^*\in S(\mathcal{M},\tau)^+$, by the operator monotonocity of the function $f(t)=\sqrt{t}$ $(t\geq 0)$ [20, Chap. 1, Proposition 4.4], we obtain

$$\sqrt{\tilde{P} + ZZ^*} \ge \sqrt{\tilde{P}} = \tilde{P}$$
 and $\sqrt{\tilde{P} + ZZ^*} \ge \sqrt{ZZ^*} = |Z^*|$.

Corollary 8. Let $\langle \mathcal{E}, || \cdot ||_{\mathcal{E}} \rangle$ be an F-normed ideal space on (\mathcal{M}, τ) and $P = P^2 \in \mathcal{E}$, $P = \tilde{P} + Z$ be the representation of Lemma 3. Then, $\tilde{P}, Z \in \mathcal{E}$ and

$$||\tilde{P}||_{\mathcal{E}} + ||Z||_{\mathcal{E}} \ge ||P||_{\mathcal{E}} = ||P^*||_{\mathcal{E}} \ge \max\{||\tilde{P}||_{\mathcal{E}}, ||Z||_{\mathcal{E}}\}.$$

Proof. Let $P^* = \tilde{P} + Z$ be the representation of Lemma 3. By item (ii) of Theorem 3, we have $\tilde{P}, Z \in \mathcal{E}$. By properties of the F-norm $||\cdot||_{\mathcal{E}}$, we obtain $||P^*||_{\mathcal{E}} = ||P||_{\mathcal{E}} = ||P|||_{\mathcal{E}} \ge ||\tilde{P}||_{\mathcal{E}}$ and $||P^*||_{\mathcal{E}} = ||P|||_{\mathcal{E}} = ||P|||_{\mathcal{E}} \ge ||P|||_{\mathcal{E}} \ge ||P|||_{\mathcal{E}} \ge ||P|||_{\mathcal{E}} = ||P|||_{\mathcal{E}}$. The rest is clear.

Theorem 4. Let an operator $A \in L_2(\mathcal{M}, \tau)$ and $A^2 + A^{2*} \ge tA^*A - (t-2)AA^*$ for some $t \in \mathbb{R}$. Then, $A = A^*$.

Proof. We have $\tau(A^*A - AA^*) = ||A||_2^2 - ||A^*||_2^2 = 0$ and

$$0 \le ||A - A^*||_2^2 = \tau((A^* - A)(A - A^*)) = \tau (A^*A - A^{*2} - A^2 + AA^*)$$

$$\le (1 - t)\tau(A^*A - AA^*) = 0.$$

Hence, $A = A^*$ by faithfulness of the norm $||\cdot||_2$.

Corollary 9. If an operator $A = A^2 \in L_2(\mathcal{M}, \tau)$ and $Re(A) \ge sA^*A - (s-1)AA^*$ for some $s \in \mathbb{R}$, then $A \in \mathcal{M}^{\operatorname{pr}}$.

Theorem 5. Let an operator $A \in L_2(\mathcal{M}, \tau)$ and $U \in \mathcal{M}$ be an isometry. Then, $||UA - A||_2^2 \le 2||(I - U)AA^*||_1$. In particular, if $A = A^*$, then $||UA - A||_2^2 \le 2||UA^2 - A^2||_1$.

Proof. We have

$$\begin{split} ||UA-A||_2^2 &= \tau((UA-A)^*(UA-A)) = \tau(A^*A-A^*U^*A-A^*UA+A^*A) \\ &= \tau(A^*(I-U^*)A+A^*(I-U)A) = 2\tau(\operatorname{Re}(A^*(I-U)A)) = 2\tau(A^*(I-\operatorname{Re}(U))A) \\ &\leq 2|\tau(A^*(I-\operatorname{Re}(U))A)-i\tau(A^*(\operatorname{Im}(U))A)| \\ &= 2|\tau(A^*(I-U)A)| = 2|\tau((I-U)AA^*)| \leq 2\tau(|(I-U)AA^*|) = 2||(I-U)AA^*||_1, \end{split}$$

according to Lemma 2 with the operators A^* and (I-U)A and the inequality $|\tau(X)| \le \tau(|X|)$ for all $X \in L_1(\mathcal{M}, \tau)$, see [21, p. 1463].

For the algebra $\mathcal{M} = \mathcal{B}(\mathcal{H})$, endowed with the trace $\tau = \text{tr}$, an operator $A \ge 0$ and a unitary U Theorem 5 was established in [22, Lemma 1].

FUNDING

The work is performed under the development program of Volga Region Mathematical Center (agreement no. 075-02-2023-944).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

REFERENCES

- 1. J. Avron, R. Seiler, and B. Simon, "The index of a pair of projections," J. Funct. Anal. **120**, 220–237 (1994). https://doi.org/10.1006/jfan.1994.1031
- 2. N. J. Kalton, "A note on pairs of projections," Bol. Soc. Mat. Mex. **3**, 309–311 (1997). https://doi.org/10.1007/978-3-319-18796-9 8
- 3. A. M. Bikchentaev, "Differences of idempotents in C^* -algebras," Sib. Math. J. **58**, 183–189 (2017). https://link.springer.com/article/10.1134/S003744661702001X
- 4. J. Bellissard, A. van Elst, and H. Schulz-Baldes, "The noncommutative geometry of the quantum Hall effect. Topology and physics," J. Math. Phys. **35**, 5373–5451 (1994). https://doi.org/10.1063/1.530758
- 5. F. Gesztesy, "From mathematical physics to analysis: A walk in Barry Simon's mathematical garden, II," Not. Am. Math. Soc. **63**, 878–889 (2016). http://doi.org/10.1090/noti1412
- 6. A. M. Bikchentaev, "Differences of idempotents in C^* -algebras and the quantum Hall effect," Theor. Math. Phys. **195**, 557–562 (2018). https://link.springer.com/article/10.1134/S0040577918040074
- 7. A. M. Bikchentaev, "Concerning the theory of τ -measurable operators affiliated to a semifinite von Neumann algebra," Math. Notes **98**, 382–391 (2015). https://doi.org/10.1134/S0001434615090035
- 8. A. M. Bikchentaev and Mahmoud Khadour, "Differences of idempotents in C^* -algebras and the quantum Hall effect. II. Unbounded idempotents," Mat. Teor. Komp'yut. Nauki 1 (4), 35–48 (2023). https://doi.org/10.26907/2949-3919.2023.4.35-48
- 9. M. Takesaki, Theory of Operator Algebras. I, Vol. 124 of Encyclopaedia of Mathematical Sciences, Vol. 5 of Operator Algebras and Non-commutative Geometry (Springer, Berlin, 2002). https://doi.org/10.1007/978-1-4612-6188-9
- 10. M. Takesaki, Theory of Operator Algebras. II, Vol. 125 of Encyclopaedia of Mathematical Sciences, Vol. 6 of Operator Algebras and Non-commutative Geometry (Springer, Berlin, 2003). https://doi.org/10.1007/978-3-662-10451-4
- 11. A. M. Bikchentaev, "The algebra of thin measurable operators is directly finite," Constr. Math. Anal. **6**, 1–5 (2023). https://doi.org/10.33205/cma.1181495
- 12. A. M. Bikchentaev, "Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra," Sib. Math. J. **59**, 243–251 (2018). https://doi.org/10.1134/S0037446618020064
- 13. A. M. Bikchentaev, "On a property of L_p spaces on semifinite von Neumann algebras," Math. Notes **64**, 159–163 (1998). https://doi.org/10.1007/BF02310299
- 14. A. M. Bikchentaev, "Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra," Ufa Math. J. 11 (3), 3–10 (2019). https://doi.org/10.13108/2019-11-3-3

- 15. S. G. Krein, Ju. I. Petunin, and E. M. Semenov, *Interpolation of Linear Operators*, Vol. 54 of *Translations of Mathematical Monographs* (AMS, Providence, RI, 1982).
- 16. L. G. Brown and H. Kosaki, "Jensen's inequality in semifinite von Neumann algebra," J. Oper. Theory 23, 3–19 (1990). https://www.theta.ro/jot/archive/1990-023-001/1990-023-001-001.html
- 17. A. M. Bikchentaev, "On idempotent τ -measurable operators affiliated to a von Neumann algebra," Math. Notes **100**, 515–525 (2016). https://doi.org/10.1134/S0001434616090224
- 18. A. M. Bikchentaev and R. S. Yakushev, "Representation of tripotents and representations via tripotents," Linear Algebra Appl. **435**, 2156–2165 (2011). https://doi.org/10.1016/j.laa.2011.04.003
- 19. A. M. Bikchentaev and Kh. Fawwaz, "Differences and commutators of idempotents in C^* -algebras," Russ. Math. (Iz. VUZ) **65** (8), 13–22 (2021). https://link.springer.com/article/10.3103/S1066369X21080028
- 20. A. N. Sherstnev, *Methods of Bilinear Forms in Non-Commutative Measure and Integral Theory* (Fizmatlit, Moscow, 2008) [in Russian].
- 21. G. Pisier and Q. Xu, "Non-commutative L_p -spaces," in Handbook of the Geometry of Banach Spaces (North-Holland, Amsterdam, 2003), Vol. 2, pp. 1459–1517. https://doi.org/10.1016/S1874-5849(03)80041-4
- 22. M. Choda, "Characterization of approximately inner automorphisms," Proc. Am. Math. Soc. **84**, 231–234 (1982). https://doi.org/10.1090/S0002-9939-1982-0637174-2

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.