Form of presentation | Articles in international journals and collections |
Year of publication | 2023 |
Язык | английский |
|
Bikchentaev Ayrat Midkhatovich, author
|
Bibliographic description in the original language |
Bikchentaev A. Commutators in $C*$-algebras and traces / Airat Bikchentaev // Annals of Functional Analysis - 2023. Vol. 14. Article number 42. P. 1-14. |
Annotation |
Let $\mathcal{H}$ be a Hilbert space, $\dim \mathcal{H}= +\infty$. Let $X=U|X|$ be the polar decomposition of an
operator $X\in \mathcal{B}(\mathcal{H})$. Then $X$ is a non-commutator if and only if both $U$ and $|X|$ are non-commutators. A Hermitian operator $X\in \mathcal{B}(\mathcal{H})$ is a commutator if and only if the Cayley transform $\mathcal{K}(X)$ is a commutator.
Let $\mathcal{H}$ be a Hilbert space and $\dim mathcal{H}\leq +\infty$, $A,B, P\in \mathcal{B}(\mathcal{H})$ and $P=P^2$.
If $AB=\lambda BA$ for some $\lambda \in \mathbb{C}\setminus\{1\}$ then the operator $AB$ is a commutator.
The operator $AP$ is a commutator if and only if $PA$ is a commutator. |
Keywords |
Hilbert space, linear operator, commutator, $C^*$-algebra, trace |
The name of the journal |
Annals of Functional Analysis
|
On-line resource for training course |
http://dspace.kpfu.ru/xmlui/bitstream/handle/net/175256/F_s43034_023_00260_6.pdf?sequence=1&isAllowed=y
|
URL |
https://doi.org/10.1007/s43034-023-00260-6 |
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=277243&p_lang=2 |
Resource files | |
|
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Bikchentaev Ayrat Midkhatovich |
ru_RU |
dc.date.accessioned |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2023 |
ru_RU |
dc.identifier.citation |
Bikchentaev A. Commutators in $C*$-algebras and traces / Airat Bikchentaev // Annals of Functional Analysis - 2023. Vol. 14. Article number 42. P. 1-14. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=277243&p_lang=2 |
ru_RU |
dc.description.abstract |
Annals of Functional Analysis |
ru_RU |
dc.description.abstract |
Let $\mathcal{H}$ be a Hilbert space, $\dim \mathcal{H}= +\infty$. Let $X=U|X|$ be the polar decomposition of an
operator $X\in \mathcal{B}(\mathcal{H})$. Then $X$ is a non-commutator if and only if both $U$ and $|X|$ are non-commutators. A Hermitian operator $X\in \mathcal{B}(\mathcal{H})$ is a commutator if and only if the Cayley transform $\mathcal{K}(X)$ is a commutator.
Let $\mathcal{H}$ be a Hilbert space and $\dim mathcal{H}\leq +\infty$, $A,B, P\in \mathcal{B}(\mathcal{H})$ and $P=P^2$.
If $AB=\lambda BA$ for some $\lambda \in \mathbb{C}\setminus\{1\}$ then the operator $AB$ is a commutator.
The operator $AP$ is a commutator if and only if $PA$ is a commutator. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
linear operator |
ru_RU |
dc.subject |
commutator |
ru_RU |
dc.subject |
$C^*$-algebra |
ru_RU |
dc.subject |
trace |
ru_RU |
dc.title |
Commutators in $C*$-algebras and traces |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|