ORIGINAL PAPER

Commutators in C^{*}-algebras and traces

Airat Bikchentaev ${ }^{1}$

Received: 10 October 2022 / Accepted: 20 January 2023
© Tusi Mathematical Research Group (TMRG) 2023

Abstract

Let \mathcal{H} be a Hilbert space, $\operatorname{dim} \mathcal{H}=+\infty$. Let $X=U|X|$ be the polar decomposition of an operator $X \in \mathcal{B}(\mathcal{H})$. Then, X is a non-commutator if and only if both U and $|X|$ are non-commutators. A Hermitian operator $X \in \mathcal{B}(\mathcal{H})$ is a commutator if and only if the Cayley transform $\mathcal{K}(X)$ is a commutator. Let \mathcal{H} be a Hilbert space and $\operatorname{dim} \mathcal{H} \leq+\infty, A, B, P \in \mathcal{B}(\mathcal{H})$ and $P=P^{2}$. If $A B=\lambda B A$ for some $\lambda \in \mathbb{C} \backslash\{1\}$ then the operator $A B$ is a commutator. The operator $A P$ is a commutator if and only if $P A$ is a commutator.

Keywords Hilbert space • Linear operator • Commutator • C^{*}-algebra • Trace
Mathematics Subject Classification 46L05 • 46L30 • 47C15

1 Introduction

Dimension functions and traces on C^{*}-algebras are fundamental tools in the operator theory and its applications. Therefore, they have been actively studied in recent decades, see $[12,14,23,29,32,34]$. For a C^{*}-subalgebra $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$, put

$$
\mathcal{A}_{0}=\left\{X \in \mathcal{A}: X=\sum_{n \geq 1}\left[X_{n}, X_{n}^{*}\right] \text { for }\left(X_{n}\right)_{n \geq 1} \subset \mathcal{A}\right\},
$$

the series $\|\cdot\|$-converges. It is proved in [20, Theorem2.6] that \mathcal{A}_{0} coincides with the zero-space of all finite traces on $\mathcal{A}^{\text {sa }}$. For a wide class of C^{*}-algebras that contains all von Neumann algebras, we can consider only finite sums of the indicated form, see [24]. Elements of unital C^{*}-algebras without tracial states can be represented as finite

[^0]sums of commutators. Moreover, the number of commutators involved in these sums is bounded and depends only on the given C^{*}-algebra [31]. The characterization of traces on C^{*}-algebras is an urgent problem and attracts the attention of a large group of researchers. Commutation relations allowed to obtain characterizations of the traces in a broad class of weights on von Neumann algebras and C^{*}-algebras [6-9]. An interesting problem is representation of elements of C^{*}-algebras via commutators of special form [4, 13, 27].

The following results were obtained. Let \mathcal{H} be a Hilbert space, $\operatorname{dim} \mathcal{H}=+\infty$. (1) Let a Hermitian operator $X \in \mathcal{B}(\mathcal{H})$ be a non-commutator and $\sigma(X)$ be the spectrum of X. Then, $f(X)$ is a non-commutator for every continuous function $f: \sigma(X) \rightarrow \mathbb{R}$ with $f(x) \neq 0$ (Lemma 3.13). (2) Let $X=U|X|$ be the polar decomposition of an operator $X \in \mathcal{B}(\mathcal{H})$. Then, the following conditions are equivalent: (i) X is a non-commutator; (ii) U and $|X|$ are non-commutators (Theorem 3.15). (3) For a Hermitian operator $X \in \mathcal{B}(\mathcal{H})$, the following conditions are equivalent: (i) X is a commutator; (ii) the Cayley transform $\mathcal{K}(X)$ is a commutator (Theorem 3.17). (4) Let \mathcal{H} be a Hilbert space and $\operatorname{dim} \mathcal{H} \leq+\infty, A, B \in \mathcal{B}(\mathcal{H})$ and $P \in \mathcal{B}(\mathcal{H}), P=P^{2}$. If $A B=\lambda B A$ for some $\lambda \in \mathbb{C} \backslash\{1\}$ then the operator $A B$ is a commutator. The operator $A P$ is a commutator if and only if $P A$ is a commutator (Theorem 3.19).

2 Preliminaries

Let \mathcal{A} be an algebra, $\mathcal{A}^{\text {id }}=\left\{A \in \mathcal{A}: A^{2}=A\right\}$ be the set of all idempotents in \mathcal{A}. An element $X \in \mathcal{A}$ is a commutator, if $X=[A, B]=A B-B A$ for some $A, B \in \mathcal{A}$. For $X, Y \in \mathcal{A}$ define their Jordan product by the equality $X \circ Y=\frac{X Y+Y X}{2}$. For $A, B \in \mathcal{A}$ we write $A \sim B$ if there exist $X, Y \in \mathcal{A}$ so that $X Y=A, Y X=B$ (hence $A-B=[X, Y])$. If \mathcal{A} is unital and $A, B \in \mathcal{A}$ are similar then $A \sim B$.

A C^{*}-algebra is a complex Banach $*$-algebra \mathcal{A} such that $\left\|A^{*} A\right\|=\|A\|^{2}$ for all $A \in \mathcal{A}$. For a C^{*}-algebra \mathcal{A} by $\mathcal{A}^{\text {pr }}$, $\mathcal{A}^{\text {sa }}$, and \mathcal{A}^{+}we denote its projections ($A=A^{*}=A^{2}$), Hermitian elements, and positive elements, respectively. If $A \in \mathcal{A}$, then $|A|=\sqrt{A^{*} A} \in \mathcal{A}^{+}$. In a C^{*}-algebra \mathcal{A}, two projections P and Q are $*$-equivalent if there exists an element X in \mathcal{A} (necessarily a partial isometry) such that $P=X^{*} X$ and $Q=X X^{*}$. If $R \in \mathcal{A}^{\text {id }}$ then $R \sim T$ for some $T \in \mathcal{A}^{\mathrm{pr}}$; if $P, Q \in \mathcal{A}^{\mathrm{pr}}$ and $P \sim Q$ then P and Q are $*$-equivalent [21, Proposition IV.1.1]. As is well known, in a unital C^{*}-algebra \mathcal{A}, the Cayley transform

$$
\mathcal{K}(X)=\frac{X+\mathrm{i} I}{X-\mathrm{i} I}=(X-\mathrm{i} I)^{-1}(X+\mathrm{i} I)=(X+\mathrm{i} I)(X-\mathrm{i} I)^{-1}
$$

of an element $X \in \mathcal{A}^{\text {sa }}$ is a unitary element of \mathcal{A}.
A mapping $\varphi: \mathcal{A}^{+} \rightarrow[0,+\infty]$ is called a trace on a C^{*}-algebra \mathcal{A}, if $\varphi(X+Y)=$ $\varphi(X)+\varphi(Y), \quad \varphi(\lambda X)=\lambda \varphi(X)$ for all $X, Y \in \mathcal{A}^{+}, \lambda \geq 0($ moreover, $0 \cdot(+\infty) \equiv 0) ;$ $\varphi\left(Z^{*} Z\right)=\varphi\left(Z Z^{*}\right)$ for all $Z \in \mathcal{A}$. For a trace φ, define

$$
\mathfrak{M}_{\varphi}^{+}=\left\{X \in \mathcal{A}^{+}: \varphi(X)<+\infty\right\}, \quad \mathfrak{M}_{\varphi}=\operatorname{lin}_{\mathbb{C}} \mathfrak{M}_{\varphi}^{+}
$$

The restriction $\left.\varphi\right|_{\mathfrak{M}_{\varphi}^{+}}$can always be extended by linearity to a functional on \mathfrak{M}_{φ}, which we denote by the same letter φ.

Lemma 2.1 Let φ be a trace on a C^{*}-algebra \mathcal{A}. Then, $\varphi(A B)=\varphi(B A)$ for all $A \in \mathfrak{M}_{\varphi}$ and $B \in \mathcal{A}$.

Proof See, for example, [22, §6, item (iii) of Proposition 6.1.2].
A positive linear functional φ on \mathcal{A} with $\|\varphi\|=1$ is called a state. A trace φ is called faithful, if $\varphi(X)=0\left(X \in \mathcal{A}^{+}\right) \Rightarrow X=0$.

Let \mathcal{H} be a Hilbert space over the field $\mathbb{C}, \mathcal{B}(\mathcal{H})$ be the $*$-algebra of all linear bounded operators on \mathcal{H}. An operator $X \in \mathcal{B}(\mathcal{H})$ possesses a left (resp., right) essential inverse X_{l}^{-1} (resp., X_{r}^{-1}) if $X_{l}^{-1} X=I+K$ (resp., $X X_{r}^{-1}=I+K$) for some compact operator $K \in \mathcal{B}(\mathcal{H})$. We have $\mathfrak{M}_{\text {tr }}=\mathfrak{S}_{1}(\mathcal{H})$, the set of all trace class operators on \mathcal{H}. By Gelfand-Naimark Theorem every C^{*}-algebra is isometrically isomorphic to a concrete C^{*}-algebra of operators on a Hilbert space \mathcal{H} [16, II.6.4.10]. For $\operatorname{dim} \mathcal{H}=n<+\infty$, the algebra $\mathcal{B}(\mathcal{H})$ can be identified with the full matrix algebra $\mathbb{M}_{n}(\mathbb{C})$.

Let \mathcal{H} be an infinite-dimensional Hilbert space. The algebra $\mathcal{B}(\mathcal{H})$ is known to contain a proper uniformly closed ideal \mathcal{J} that contains all other proper uniformly closed ideals of $\mathcal{B}(\mathcal{H})$, see [17, Section 6]. In case \mathcal{H} is separable, \mathcal{J} is the ideal of compact operators. Combining Theorems 3 and 4 in [17], we get the following assertion.

Theorem 2.2 (Brown-Pearcy Theorem) An operator $X \in \mathcal{B}(\mathcal{H})$ is a non-commutator if and only if $X=x I+J$ for some $x \in \mathbb{C} \backslash\{0\}$ and $J \in \mathcal{J}$.

If $T \in \mathcal{B}(\mathcal{H})$ and $T=U|T|$ is its polar decomposition, the Aluthge transform of T is the operator $\Delta(T)$ defined as $\Delta(T)=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ [1]. More generally, for any real number $\lambda \in[0,1]$, the λ-Aluthge transformation is defined as $\Delta_{\lambda}(T)=$ $|T|^{\lambda} U|T|^{1-\lambda} \in \mathcal{B}(\mathcal{H})$ [18]. We have $T \sim \Delta_{\lambda}(T)$ for any $\lambda \in$ [0, 1] (hint: put $X=|T|^{\lambda}$ and $\left.Y=U|T|^{1-\lambda}\right)$.

3 Idempotents and commutators in C*-algebras

Lemma 3.1 Let \mathcal{A} be a unital algebra, let $A, B \in \mathcal{A}$ be such that $A B A=\lambda A$ for some $\lambda \in \mathbb{C} \backslash\{0\}$.
(i) If $A \in \mathcal{A}^{\text {id }}$ then the idempotents $A, \lambda^{-1} A B$ and $\lambda^{-1} B A$ are pairwise similar.
(ii) If $B \in \mathcal{A}^{\text {id }}$ then the idempotents $\lambda^{-1} A B, \lambda^{-1} B A$ and $\lambda^{-1} B A B$ are pairwise similar.
(iii) If $A, B \in \mathcal{A}^{\text {id }}$ then $A \sim \lambda^{-1} B A B$. If, moreover, $B A B=\lambda B$ then $A \sim B$.

Proof (i) The elements $P=\lambda^{-1} A B$ and $Q=\lambda^{-1} B A$ lie in $\mathcal{A}^{\text {id }}$. We have $P A=A$ and $A P=P$ (resp., $Q A=Q$ and $A Q=A$) and apply [13, Lemma 2]. Therefore, the idempotents A and P (resp., A and Q) are similar. Since similarity is an equivalence relation, the idempotents P and Q are also similar. If \mathcal{A} acts on a vector space \mathcal{E}, then by [19, Lemma 2], we have $\operatorname{Im} P=\operatorname{Im} A$ and $\operatorname{Ker} Q=\operatorname{Ker} A$.
(ii) The elements $P=\lambda^{-1} A B, Q=\lambda^{-1} B A$ and $R=\lambda^{-1} B A B$ lie in $\mathcal{A}^{\text {id }}$. We have $P R=P$ and $R P=R$ (resp., $Q R=R$ and $R Q=Q$) and apply [13, Lemma 2]. Therefore, the idempotents P and R (resp., Q and R) are similar. Since similarity is an equivalence relation, the idempotents P and Q are also similar. If \mathcal{A} acts on a vector space \mathcal{E} then by [19, Lemma 2] we have $\operatorname{Im} Q=\operatorname{Im} R$ and $\operatorname{Ker} P=\operatorname{Ker} R$.
(iii) Put $X=\lambda^{-1} A B$ and $Y=B A$.

Projections $P, Q \in \mathcal{B}(\mathcal{H})$ are called isoclinic with angle $\theta \in(0, \pi / 2)$, if $P Q P=$ $\cos ^{2} \theta P$ and $Q P Q=\cos ^{2} \theta Q$ [33, Definition 10.4]. Thus, in this case, the idempotents $P, Q, \cos ^{-2} \theta P Q, \cos ^{-2} \theta Q P$ are pairwise similar.

Example Consider the following complex 2×2 matrices:

$$
P=\left(\begin{array}{ll}
1 & z \\
0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{ll}
1 & 0 \\
z & 0
\end{array}\right), \quad X=\left(\begin{array}{cc}
\lambda & \mu \\
0 & v
\end{array}\right) .
$$

Then, $P, Q \in \mathbb{M}_{2}(\mathbb{C})^{\text {id }}$ and $P X P=\lambda P, P Q P=\left(1+z^{2}\right) P, Q P Q=\left(1+z^{2}\right) Q$. For an arbitrary $A \in \mathbb{M}_{n}(\mathbb{C})$, there exists a pseudo-inverse $B \in \mathbb{M}_{n}(\mathbb{C})$ such that $A B A=A($ see [30, Theorem 1.4.15]).

Lemma 3.2 Let \mathcal{A} be an algebra, $A, B \in \mathcal{A}^{\text {id }}$ be such that $A B A=\lambda A$ and $B A B=$ λB for some $\lambda \in \mathbb{C} \backslash\{0,1\}$. Then, the idempotents $A, \lambda^{-1} A B, B$ and $\lambda^{-1} B A$ are pairwise similar and $P=\frac{1}{1-\lambda}(A-B)^{2} \in \mathcal{A}^{\text {id }}$. We have $[A, B]^{2 k}=\lambda^{k}(\lambda-1)^{k} P$ and $[A, B]^{2 k+1}=\lambda^{k}(\lambda-1)^{k}[A, B]$ for all $k \in \mathbb{N}$.

If \mathbb{J} is an ideal in \mathcal{A} then $[A, B]^{n} \in \mathbb{J} \Leftrightarrow A, B \in \mathbb{J}$ for all $n \in \mathbb{N}$.
Proof By Lemma 3.1, the idempotents $A, \lambda^{-1} A B, B$ and $\lambda^{-1} B A$ are pairwise similar. We have

$$
\begin{equation*}
[A, B]^{2}=A B A \cdot B+B A B \cdot A-A B A-B A B=-\lambda(A-B)^{2} \tag{3.1}
\end{equation*}
$$

On the other hand, for all $A, B \in \mathcal{A}^{\text {id }}$, we have

$$
[A, B]^{2}=(A-B)^{4}-(A-B)^{2}
$$

Thus, by (3.1), we obtain $(A-B)^{4}=(1-\lambda)(A-B)^{2}$. Multiply both sides of the last equality by the number $(1-\lambda)^{-2}$ and obtain $P=\frac{1}{1-\lambda}(A-B)^{2} \in \mathcal{A}^{\text {id }}$. Since $(A-B)^{2}$ commutes with A and B for all $A, B \in \mathcal{A}^{\text {id }}$, we have $P A=A P=A$ and $P B=$ $B P=B$. Since $[A, B]^{2}=\lambda(\lambda-1) P$, we conclude that $[A, B]^{2 k}=\lambda^{k}(\lambda-1)^{k} P$ for all $k \in \mathbb{N}$. Since $[A, B]^{2 k+1}=[A, B]^{2 k} \cdot[A, B]=\lambda^{k}(\lambda-1)^{k}[A, B]$, the element $[A, B]^{2 k+1}$ is a commutator for all $k \in \mathbb{N}$.

Let \mathbb{J} be an ideal in $\mathcal{A}, \lambda \neq 0, n \in \mathbb{N}$ and $[A, B]^{n} \in \mathbb{J}$.
Step 1. If n is even then by the equality $[A, B]^{2 k}=\lambda^{k}(\lambda-1)^{k} P$, we have $(A-B)^{2} \in$ \mathbb{J} and $(1-\lambda) A=A-A B A=A(A-B)^{2} A \in \mathbb{J}$. Thus, $A \in \mathbb{J}$.

Step 2. If n is odd then for the even number $n+1$, we have $[A, B]^{n+1}=[A, B]^{n}$. $[A, B] \in \mathbb{J}$ and apply Step 1 .

Example Consider the following complex 2×2 matrices:

$$
P=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{ll}
1 & z \\
0 & 0
\end{array}\right) .
$$

Then, $P, Q \in \mathbb{M}_{2}(\mathbb{C})^{\text {id }}$ and $P Q P=P, Q P Q=Q$.
Theorem 3.3 Let φ be a faithful trace on a C^{*}-algebra \mathcal{A}; let $A, B \in \mathcal{A}^{\text {id }} \backslash\{0\}$ be such that $A B A=\lambda A$ and $B A B=\lambda B$ for some $\lambda \in \mathbb{C} \backslash\{0,1\}$. Then, $[A, B]^{n} \neq 0$ for all $n \in \mathbb{N}$.

Proof It suffices to show that $[A, B]^{n} \neq 0$ for all even $n \in \mathbb{N}$.
Case 1: $[A, B]^{2 k} \notin \mathfrak{M}_{\varphi}$. Then, $[A, B]^{2 k} \neq 0$.
Case 2: $[A, B]^{2 k} \in \mathfrak{M}_{\varphi}$. Then, by Lemma 3.2 we obtain $A, B \in \mathfrak{M}_{\varphi}$. We have $\varphi(A), \varphi(B) \in \mathbb{R}^{+}$by [10, Theorem 4.6] and recall that the trace φ is faithful. Now, apply Lemma 3.2 and by Lemma 2.1 obtain

$$
\begin{aligned}
\varphi\left([A, B]^{2 k}\right) & =\lambda^{k}(\lambda-1)^{k} \varphi(P) \\
& =-\lambda^{k}(\lambda-1)^{k-1}(\varphi(A)-\varphi(A B)+\varphi(B)-\varphi(B A)) \\
& =-\lambda^{k}(\lambda-1)^{k-1}(\varphi(A)-\varphi(A B A)+\varphi(B)-\varphi(B A B)) \\
& =\lambda^{k}(\lambda-1)^{k}(\varphi(A)+\varphi(B)) \neq 0
\end{aligned}
$$

Thus, $[A, B]^{n} \neq 0$ for all $n \in \mathbb{N}$.
Corollary 3.4 Let φ be a faithful tracial state on a C^{*}-algebra \mathcal{A}, let $A, B \in \mathcal{A}^{\text {id }} \backslash\{0\}$ be such that $A B A=\lambda A$ and $B A B=\lambda B$ for some $\lambda \in \mathbb{C} \backslash\{0,1\}$. Then, the element $[A, B]^{2 n}$ is a non-commutator for all $n \in \mathbb{N}$.

Proof We have $\varphi\left([A, B]^{2 n}\right) \neq 0$ for all $n \in \mathbb{N}$ (see the proof of Theorem 3.3).
Theorem 2.2 allows us to state
Lemma 3.5 Let \mathcal{H} be a Hilbert space, $\operatorname{dim} \mathcal{H}=\infty$. If operators $X, Y \in \mathcal{B}(\mathcal{H})$ are non-commutators then $X Y$ and $X \circ Y$ are non-commutators. In particular, X^{n} is a non-commutator for every $n \in \mathbb{N}$.

Theorem 3.6 Let \mathcal{H} be a Hilbert space, $\operatorname{dim} \mathcal{H}=+\infty$, and let an operator $X \in \mathcal{B}(\mathcal{H})$ be a non-commutator. If $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n} \in \mathcal{B}(\mathcal{H})$ and $A_{1} B_{1}, \ldots, A_{n} B_{n}$ are non-commutators, then the operator $A_{n} \cdots A_{1} X B_{1} \cdots B_{n}$ is a non-commutator.

Proof We apply Theorem 2.2. Let $X=\lambda I+J$ and $A_{k} B_{k}=\lambda_{k} I+J_{k}$ for some $\lambda, \lambda_{k} \in \mathbb{C} \backslash\{0\}$ and operators $J, J_{k} \in \mathcal{J}$ for $k=1, \ldots, n$. The proof is by induction. For $n=1$, we have

$$
\begin{aligned}
A_{1} X B_{1} & =A_{1}(\lambda I+J) B_{1}=\lambda A_{1} B_{1}+A_{1} J B_{1}=\lambda\left(\lambda_{1} I+J_{1}\right)+A_{1} J B_{1} \\
& =\lambda \lambda_{1} I+\lambda J_{1}+A_{1} J B_{1} .
\end{aligned}
$$

Note that $\lambda \lambda_{1} \neq 0$ and the operator $\lambda J_{1}+A_{1} J B_{1}$ lies in \mathcal{J}. The case of $n \geq 2$ follows by induction.

Corollary 3.7 If $A, B \in \mathcal{B}(\mathcal{H})$ and the operator $A B$ is a non-commutator, then the operator $A^{n} B^{n}$ is a non-commutator for every $n \in \mathbb{N}$.

Lemma 3.8 (on division) Let \mathcal{H} be a Hilbert space, $\operatorname{dim} \mathcal{H}=+\infty$ and $X, Y \in \mathcal{B}(\mathcal{H})$.
(i) If $X Y$ and X (resp., Y) are non-commutators, then Y (resp., X) is a noncommutator.
(ii) If $X \circ Y$ and X (resp., Y) are non-commutators then Y (resp., X) is a noncommutator.

Proof (i) Let operators $X Y$ and X be non-commutators. Then, by Theorem 2.2, we have

$$
X Y=\lambda I+J, \quad X=\mu I+J_{1}
$$

for some $\lambda, \mu \in \mathbb{C} \backslash\{0\}$ and certain operators $J, J_{1} \in \mathcal{J}$. Therefore,

$$
\lambda I+J=X Y=\left(\mu I+J_{1}\right) Y=\mu Y+J_{1} Y
$$

and $Y=\frac{\lambda}{\mu} I+J_{2}$ with the operator $J_{2}=\frac{1}{\mu}\left(K-J_{1} Y\right) \in \mathcal{J}$. Thus, Y is a noncommutator by Theorem 2.2.

In particular, if $X \in \mathcal{B}(\mathcal{H})$ is left (resp., right) invertible, then X is a non-commutator if and only if X_{l}^{-1} (resp., X_{r}^{-1}) is a non-commutator.
(ii) Let operators $X \circ Y$ and X be non-commutators. Then, by Theorem 2.2, we have

$$
X \circ Y=\lambda I+J, \quad X=\mu I+J_{1}
$$

for some $\lambda, \mu \in \mathbb{C} \backslash\{0\}$ and certain operators $J, J_{1} \in \mathcal{J}$. Therefore,

$$
\lambda I+J=X \circ Y=\frac{\left(\mu I+J_{1}\right) Y+Y\left(\mu I+J_{1}\right)}{2}=\mu Y+\frac{J_{1} Y+Y J_{1}}{2}
$$

and $Y=\frac{\lambda}{\mu} I+J_{2}$ with the operator $J_{2}=\frac{1}{\mu}\left(J-J_{1} \circ Y\right) \in \mathcal{J}$. Thus, Y is a noncommutator by Theorem 2.2.

Corollary 3.9 [15, Corollary 14] If \mathcal{H} is separable and an operator $X \in \mathcal{B}(\mathcal{H})$ admits a left (resp., right) essential inverse $X_{l}^{-1}\left(\right.$ resp., $\left.X_{r}^{-1}\right)$ then $X_{l}^{-1}\left(\right.$ resp., $\left.X_{r}^{-1}\right)$ is a non-commutator if and only if X is a non-commutator.

Corollary 3.10 Let $\lambda \in \mathbb{C}$ be a regular point of $X \in \mathcal{B}(\mathcal{H})$ and $R_{\lambda}=(X-\lambda I)^{-1}$ be the resolvent of X. If X is a non-commutator, then R_{λ} is a non-commutator.

Proof By Theorem 2.2. we have $X=x I+J$ for some $x \in \mathbb{C} \backslash\{0\}$ and an operator $J \in \mathcal{J}$. Since every operator from \mathcal{J} is non-invertible, we infer that $x \neq \lambda$ and apply Corollary 3.9.

Corollary 3.11 Let \mathcal{H} be a Hilbert space, $\operatorname{dim} \mathcal{H}=\infty$. Let $A, B \in \mathcal{B}(\mathcal{H})$ be such that $A B A=\lambda A+J$ for some $\lambda \in \mathbb{C} \backslash\{0\}$ and an operator $J \in \mathcal{J}$. If A is a non-commutator then B is also a non-commutator.

Proof Note that an operator $\lambda A+J$ is a non-commutator, see Theorem 2.2. Apply Lemma 3.8 with $X=A B, Y=A$ and conclude that $A B$ is non-commutator. Again apply Lemma 3.8 with $X=A, Y=B$ and infer that B is non-commutator.

Lemma 3.12 Let \mathcal{J} be a proper uniformly closed ideal in a unital C^{*}-algebra \mathcal{A}. Let a Hermitian element $X \in \mathcal{A}$ be of the form $X=x I+J_{1}$, where $x \in \mathbb{R}$ and $J_{1} \in \mathcal{J}$. The equality $f(X)=f(x) I+J$ holds for any continuous real-valued function f on the spectrum $\sigma(X)$, here $J \in \mathcal{J}$.

Proof Since the ideal \mathcal{J} is proper, $I \notin \mathcal{J}$, the elements of \mathcal{J} are irreversible and $x \in$ $\sigma(X)$. Since $X^{n}=x^{n} I+J_{n}$ with $J_{n} \in \mathcal{J}$, for a polynomial $p(t)=a_{0}+a_{1} t+\cdots+a_{k} t^{k}$ we have $p(X)=a_{0} I+a_{1} X+\cdots+a_{k} X^{k}=p(x) I+J^{\prime}$, where $J^{\prime} \in \mathcal{J}$. By the Weierstrass Theorem, there exists a sequence $\left\{p_{m}\right\}_{m=1}^{\infty}$ of polynomials, which converges uniformly on $\sigma(X)$ to the function f as $m \rightarrow \infty$. For each $m \in \mathbb{N}$, $p_{m}(X)=p_{m}(x) I+J^{(m)}$, where $J^{(m)} \in \mathcal{J}$. Since $p_{m}(X) \rightarrow f(X)$ and $p_{m}(x) I \rightarrow$ $f(x) I$ as $m \rightarrow \infty$, the sequence $\left\{J^{(m)}\right\}_{m=1}^{\infty}$ also converges. The limit of $\left\{J^{(m)}\right\}_{m=1}^{\infty}$ lies in \mathcal{J}, because \mathcal{J} is uniformly closed. It follows that $f(X)=f(x) I+J$ with $J \in \mathcal{J}$.

By Lemma 3.12 and Theorem 2.2, we get
Lemma 3.13 Let \mathcal{H} be an infinite-dimensional Hilbert space. Let an operator $X \in$ $\mathcal{B}(\mathcal{H})^{\text {sa }}$ be a non-commutator, $X=x I+J$ for some $x \in \mathbb{R} \backslash\{0\}$ and $J \in \mathcal{J}$ (see Theorem 2.2). Then, $f(X)$ is a non-commutator for every continuous function f : $\sigma(X) \rightarrow \mathbb{R}$ with $f(x) \neq 0$.

Remark 3.14 In particular, an operator $X \in \mathcal{B}(\mathcal{H})^{+}$is a non-commutator if and only if an operator X^{q} is a non-commutator for some (consequently, for all) $q>0$ (recall that $\operatorname{dim} \mathcal{H}=\infty$). This fact also follows by [5, Remark 4] (hint: consider the odd continuation of the function $f(t)=t^{q}$ from $[0,+\infty)$ to $\left.\mathbb{R}\right)$. If \mathcal{H} is a separable space and an operator $X \in \mathcal{B}(\mathcal{H})^{+}$is a non-commutator, then the projection X^{0} on the closure of the range of X is a non-commutator. Indeed, if $0 \leq X \leq I$, then $\left\{X^{\frac{1}{n}}\right\}_{n=1}^{\infty}$ is a monotone increasing sequence of operators whose strong-operator limit is the projection X^{0} on the closure of the range of X [28, Lemma 5.1.5]. If $X \in \mathcal{B}(\mathcal{H})^{+}$is a non-commutator, then $\operatorname{dim} X^{0 \perp} \mathcal{H}<\infty$ and $X^{0}=I-X^{0 \perp}$ is a non-commutator by Theorem 2.2.

Theorem 3.15 Let \mathcal{H} be an infinite-dimensional Hilbert space, and let $X=U|X|$ be the polar decomposition of an operator $X \in \mathcal{B}(\mathcal{H})$. Then, the following conditions are equivalent:
(i) X is a non-commutator;
(ii) U and $|X|$ are non-commutators.

Proof (i) \Rightarrow (ii). By Theorem 2.2, we have $X=x I+J$ for some $x \in \mathbb{C} \backslash\{0\}$ and an operator $J \in \mathcal{J}$. Since an operator J^{*} is lies in $\mathcal{J}, X^{*}=\bar{x} I+J^{*}$ is a noncommutator. Now, by Lemma 3.5, the operator $X^{*} X$ is a non-commutator. Therefore, $|X|=\sqrt{X^{*} X}$ is a non-commutator by Lemma 3.13 with $f(t)=\sqrt{t}, t \geq 0$. Since $X=U|X|$, an operator U is a non-commutator by Lemma 3.8.
(ii) \Rightarrow (i). Since $X=U|X|$, the assertion follows by Lemma 3.5.

Corollary 3.16 Let \mathcal{H} be an infinite-dimensional Hilbert space, and let $T=U|T|$ be the polar decomposition of an operator $T \in \mathcal{B}(\mathcal{H})$.
(i) If T is a non-commutator, then for any real number $\lambda \in[0,1]$, the λ-Aluthge transformation $\Delta_{\lambda}(T)=|T|^{\lambda} U|T|^{1-\lambda}$ is a non-commutator.
(ii) If $|T|$ and $\Delta_{\lambda}(T)$ for some number $\lambda \in[0,1]$ are non-commutators, then T is a non-commutator.

Proof (i) By Theorem 3.15, the operators U and $|T|$ are non-commutators. Then, we apply Theorem 3.6 with $A_{1}=|T|^{\lambda}, B_{1}=|T|^{1-\lambda}$ and $X=U$.
(ii) For $\lambda \in[0,1]$, the operators $|T|^{\lambda},|T|^{1-\lambda}$ are non-commutators, see Remark 3.14. For $X=|T|^{\lambda}, Y=U|T|^{1-\lambda}$ Lemma 3.8 implies that $U|T|^{1-\lambda}$ is noncommutator. Thus, $T=U|T|^{1-\lambda} \cdot|T|^{\lambda}$ is non-commutator as a product of two non-commutators by Lemma 3.5.

For $T \in \mathcal{B}(\mathcal{H})$, $\operatorname{dim} \mathcal{H}<\infty$, we have $\operatorname{tr}(T)=\operatorname{tr}\left(\Delta_{\lambda}(T)\right)$ for any number $\lambda \in[0,1]$. Thus, T is a commutator if and only if $\Delta_{\lambda}(T)$ is a commutator for some (consequently, for all) $\lambda \in[0,1]$ by [26, Ch. 24, Problem 230].

Example Let $X=U|X|$ be the polar decomposition of a matrix $X \in \mathbb{M}_{2}(\mathbb{C})$. If X is an invertible commutator, then U is a commutator. Indeed, we have $X=\left(\begin{array}{cc}0 & b \\ a & 0\end{array}\right)$ in some basis in \mathbb{C}^{2} by [25, Ch. II, Problem 209] and $a b \neq 0$. Let $a=e^{\mathrm{i} \alpha}|a|$, $b=e^{\mathrm{i} \beta}|b|$ for $0 \leq \alpha, \beta<2 \pi$. Then, $|X|=\sqrt{X^{*} X}=\operatorname{diag}(|b|,|a|)$. For the unitary matrix $U=\left[u_{i j}\right]_{i, j=1}^{2}$ from equality $X=U|X|=\binom{u_{11}|b| u_{12}|a|}{u_{21}|b| u_{22}|a|}$, we have $u_{11}=u_{22}=0, u_{12}=e^{\mathrm{i} \alpha}, u_{21}=e^{\mathrm{i} \beta}$ and U is a commutator by [25, Ch. II, Problem 209].

Theorem 3.17 Let \mathcal{H} be an infinite-dimensional Hilbert space. Then, for $X \in \mathcal{B}(\mathcal{H})^{\text {sa }}$, the following conditions are equivalent:
(i) X is a commutator;
(ii) the Cayley transform $\mathcal{K}(X)$ is a commutator.

Proof (ii) \Rightarrow (i). Let X be a non-commutator. By Theorem 2.2, we have $X=x I+J$ for some $x \in \mathbb{R} \backslash\{0\}$ and a Hermitian operator $J \in \mathcal{J}$. The operators $X \pm \mathrm{i} I=(x \pm \mathrm{i}) I+J$ are non-commutators by Theorem 2.2. Therefore, the operator $(X-i I)^{-1}$ is a noncommutator by Corollary 3.9 and we apply Lemma 3.5. Thus, the Cayley transform $\mathcal{K}(X)$ is a non-commutator.
(i) \Rightarrow (ii). Let $\mathcal{K}(X)$ be a non-commutator. By Theorem 2.2 for the unitary operator $\mathcal{K}(X)$, we have $\mathcal{K}(X)=x I+J$ for some $x \in \mathbb{C} \backslash\{0\}$ with $|x|=1$ and an operator $J \in \mathcal{J}$. We have

$$
\begin{equation*}
X+\mathrm{i} I=\mathcal{K}(X)(X-\mathrm{i} I)=(x I+J)(X-\mathrm{i} I)=x X-\mathrm{i} x I+J X-\mathrm{i} J \tag{3.2}
\end{equation*}
$$

Therefore, if $x=1$, then $I \in \mathcal{J}$; if $x=-1$ then $X \in \mathcal{J}$. In both cases, we arrive to a contradiction. Thus, $x \neq \pm 1$. By (3.2), we have $(1-x) X=-\mathrm{i}(1+x) I+J X-\mathrm{i} J$ and apply Theorem 2.2. Thus, X is a non-commutator.

Let \mathcal{A} be an algebra, let $A, B \in \mathcal{A}$ be such that $A B=-B A$, i.e., A and B anticommute. Then, $A B$ and $B A$ are commutators: $A B=\left[\frac{A}{2}, B\right], B A=\left[B, \frac{A}{2}\right]$.

Lemma 3.18 Let \mathcal{A} be a unital algebra, let $A, B \in \mathcal{A}$ be such that $A B=\lambda B A$ for some $\lambda \in \mathbb{C} \backslash\{0\}$. Then, we have the spectral relation $\sigma(A B)=\sigma(B A)=\lambda \sigma(B A)$. Moreover, if B is invertible, then $\sigma(A)=\lambda \sigma(A)$.

Proof We have $\lambda \sigma(B A)=\sigma(\lambda B A)=\sigma(A B)$. Since

$$
\begin{equation*}
\sigma(X Y) \cup\{0\}=\sigma(Y X) \cup\{0\} \quad \text { for all } \quad X, Y \in \mathcal{A}, \tag{3.3}
\end{equation*}
$$

see [26, Ch. 9, Problem 76], we obtain $\lambda \sigma(B A) \cup\{0\}=\sigma(B A) \cup\{0\}$. Then, we consider two cases: 1) $0 \in \sigma(B A)$, and 2) $0 \notin \sigma(B A)$. In both cases, we have $\lambda \sigma(B A)=\sigma(B A)$. Thus,

$$
\sigma(A B)=\lambda \sigma(B A)=\sigma(B A)=\lambda \sigma(A B) .
$$

For an invertible B, we have $A=A B \cdot B^{-1}=\lambda B A \cdot B^{-1}$ and $\sigma(A)=\lambda \sigma\left(B A B^{-1}\right)=$ $\lambda \sigma(A)$ since similarity preserves spectra [26, Ch. 9, Problem 75].

In particular, if $\mathcal{A}=\mathbb{M}_{n}(\mathbb{C})$ and $\operatorname{det}(A B) \neq 0$, then $\lambda^{n}=1$ by the theorem on the determinant of a matrix product.

Example In $\mathbb{M}_{2}(\mathbb{C})$ for matrices $A=\operatorname{diag}(1,-1)$ and $B=\left(\begin{array}{ll}0 & x \\ y & 0\end{array}\right)$, we have $A B=$ $-B A$. Consider the primitive cubic roots of $1: \omega_{1}=1, \omega_{2}=-\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}, \omega_{3}=$ $-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2} \cdot \operatorname{In} \mathbb{M}_{3}(\mathbb{C})$ for the matrices

$$
A=\left(\begin{array}{ccc}
0 & 0 & \omega_{1} \\
\omega_{2} & 0 & 0 \\
0 & \omega_{3} & 0
\end{array}\right)
$$

and $B=\operatorname{diag}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, we have $A B=\omega_{3} B A$.
Theorem 3.19 Let \mathcal{H} be a Hilbert space and $\operatorname{dim} \mathcal{H} \leq+\infty, A, B \in \mathcal{B}(\mathcal{H})$ and $P \in \mathcal{B}(\mathcal{H})^{\text {id }}$.
(i) If $A B=\lambda B A$ for some $\lambda \in \mathbb{C} \backslash\{1\}$, then the operator $A B$ is a commutator.
(ii) If $\operatorname{dim} \mathcal{H}<+\infty$, then $A B$ is a commutator if and only if $B A$ is a commutator.
(iii) The operator $A P$ is a commutator if and only if $P A$ is a commutator.

Proof (i) For $\lambda=0$, the assertion is trivial. Assume that $\lambda \neq 0$ and consider two cases. Case 1: let $\operatorname{dim} \mathcal{H}<+\infty$. Then,

$$
\operatorname{tr}(B A)=\operatorname{tr}(A B)=\operatorname{tr}(\lambda B A)=\lambda \operatorname{tr}(B A)
$$

and $\operatorname{tr}(B A)=\operatorname{tr}(A B)=0$. Thus, $A B$ and $B A$ are commutators by [26, Ch. 24, Problem 230].

Case 2: let $\operatorname{dim} \mathcal{H}=+\infty$. Assume that the operator $A B$ is a non-commutator. Then,

$$
\begin{equation*}
A B=\mu I+J \tag{3.4}
\end{equation*}
$$

for some $\mu \in \mathbb{C} \backslash\{0\}$ and an operator $J \in \mathcal{J}$ by Theorem 2.2. Multiply both sides of equality (3.4) by the operator A from the right and obtain

$$
\begin{equation*}
A B A=\mu A+J A . \tag{3.5}
\end{equation*}
$$

Since $\lambda B A=\mu I+J$, multiply both sides of the last equality by the operator A from the left and obtain

$$
\begin{equation*}
\lambda A B A=\mu A+A J \tag{3.6}
\end{equation*}
$$

By (3.5), we have $\lambda A B A=\mu \lambda A+\lambda J A$; subtract this relation term by term from equality (3.6) and conclude that $\mu(\lambda-1) A=A J-\lambda J A$. Therefore, $A \in \mathcal{J}$. Thus $A B \in \mathcal{J}$ and we have a contradiction with representation (3.4).
(ii) If $\operatorname{dim} \mathcal{H}<+\infty$, then $\operatorname{tr}(B A)=\operatorname{tr}(A B)$ and the assertion follows by [26, Ch. 24, Problem 230].
(iii) Let $\operatorname{dim} \mathcal{H}=+\infty$. Assume that the operator $A P$ is a non-commutator. Then, by Theorem 2.2, we have $A P=x I+J$ for some $x \in \mathbb{C} \backslash\{0\}$ and an operator $J \in \mathcal{J}$. Then, for the idempotent $P^{\perp}=I-P$, we conclude that

$$
0=A P \cdot P^{\perp}=x P^{\perp}+J P^{\perp}
$$

Hence, $P^{\perp} \in \mathcal{J}$ and $P=I-P^{\perp}$ is a non-commutator by Theorem 2.2. Since $A P$ and P are non-commutators, the operator A is a non-commutator via Lemma 3.8. Since A and P are non-commutators, the operator $P A$ is a non-commutator via Lemma 3.5.

For the proof of the inverse implication, note that if $P A$ is a non-commutator, then $(P A)^{*}=A^{*} P^{*}$ is also a non-commutator by Theorem 2.2. Recall that $P^{*} \in$ $\mathcal{B}(\mathcal{H})^{\text {id }}$ and by the preceding part of the proof $P^{*} A^{*}$ is a non-commutator. Therefore, $\left(P^{*} A^{*}\right)^{*}=A P$ is a non-commutator by Theorem 2.2.

The condition $P \in \mathcal{B}(\mathcal{H})^{\text {id }}$ is essential in Theorem 3.19. If \mathcal{H} is separable and $\operatorname{dim} \mathcal{H}=+\infty$, then there exists a partial isometry $A \in \mathcal{B}(\mathcal{H})$ such that $A^{*} A=I$ and
the operators $A A^{*}, I-A A^{*}$ are non compact (hence by Theorem 2.2 we conclude that $A^{*} A$ is a non-commutator, but $A A^{*}$ is a commutator).

Corollary 3.20 Let $\operatorname{dim} \mathcal{H}=n<+\infty$ and matrices $A, B \in \mathcal{B}(\mathcal{H})$ be such that $A B=\lambda B A$ for some $\lambda \in \mathbb{C} \backslash\{1\}$.
(i) $A B$ and $B A$ are unitarily equivalent to matrices with zero diagonal.
(ii) We have $\operatorname{tr}(|I+z A B|) \geq n$ and $\operatorname{tr}(|I+z B A|) \geq n$ for all $z \in \mathbb{C}$.

Proof (i) Follows by [25, Ch. II, Problem 209].
(ii) Follows by [11, Theorem 4.8].

Theorem 3.21 Let \mathcal{H} be a Hilbert space, $U \in \mathcal{B}(\mathcal{H})$ be an isometry.
(i) If $A \in \mathcal{B}(\mathcal{H})$ is a non-commutator, then the operator $U^{*} A U$ is a non-commutator.
(ii) If \mathcal{H} is separable and U is a non-commutator, then U is unitary.

Proof If $\operatorname{dim} \mathcal{H}<+\infty$, then every isometry $U \in \mathcal{B}(\mathcal{H})$ is unitary. If $A \in \mathcal{B}(\mathcal{H})$ is a non-commutator, then

$$
0 \neq \operatorname{tr}(A)=\operatorname{tr}\left(U^{*} A U\right)
$$

and $U^{*} A U$ is a non-commutator by [26, Ch. 24, Problem 230].
Assume that $\operatorname{dim} \mathcal{H}=+\infty$. Then, (i) follows by Theorem 2.2. For the proof of (ii), note that $U=x I+K$ for some $x \in \mathbb{C} \backslash\{0\}$ and a compact operator $K \in \mathcal{B}(\mathcal{H})$, i.e., U is a thin operator. By Proposition of [2] via $U^{*} U=I$, we have $U U^{*}=I$.

Theorem 3.22 Let \mathcal{A} be an algebra and $A, B \in \mathcal{A}$ be such that $A \sim B$. Let $n \in \mathbb{N}$ and $p_{n}(t)=\sum_{k=1}^{n} a_{k} t^{k}$ be a polynomial without a constant term, $q_{n+1}(t)=t p_{n}(t)$. Then,
(i) $p_{n}(A) \sim p_{n}(B)$ and $p_{n}(A)-p_{n}(B)$ is a commutator;
(ii) if \mathbb{J} is an ideal in \mathcal{A} and $p_{n}(A) \in \mathbb{J}$, then $q_{n+1}(B) \in \mathbb{J}$;
(iii) if $A^{m}=p_{n}(A)$ for some $m \in \mathbb{N}$, then $B^{m+1}=q_{n+1}(B)$.

Proof Let $X, Y \in \mathcal{A}$ be such that $X Y=A$ and $Y X=B$.
(i) For $Z=a_{n}(X Y)^{n-1} X+a_{n-1}(X Y)^{n-2} X+\cdots+a_{1} X$, we have $p_{n}(A)=Z Y$ and $p_{n}(B)=Y Z$. Thus, $p_{n}(A) \sim p_{n}(B)$ and $p_{n}(A)-p_{n}(B)=[Z, Y]$.
(ii) Let \mathbb{J} be an ideal in \mathcal{A} and $p_{n}(A) \in \mathbb{J}$. Then,

$$
\begin{aligned}
q_{n+1}(B) & =\sum_{k=2}^{n+1} a_{k-1} B^{k}=\sum_{k=2}^{n+1} a_{k-1}(Y X)^{k}=Y\left(\sum_{k=1}^{n} a_{k}(Y X)^{k}\right) X \\
& =Y p_{n}(A) X \in \mathbb{J} .
\end{aligned}
$$

(iii) We have (see the proof of item (ii))

$$
q_{n+1}(B)=Y p_{n}(A) X=Y A^{m} X=Y(X Y)^{m} X=(Y X)^{m+1}=B^{m+1}
$$

Let \mathcal{A} be a C^{*}-algebra and $A, B \in \mathcal{A}$ be such that $A \sim B$. By relation (3.3), we have $\sigma(A) \cup\{0\}=\sigma(B) \cup\{0\}$.

Theorem 3.23 Let \mathcal{A} be $a *$-algebra. Then, for $A \in \mathcal{A}$ and $B \in \mathcal{A}^{\text {sa }}$ the following conditions are equivalent:
(i) $A \sim B$;
(ii) $A^{*} \sim B$.

Under these conditions, we have $\sigma(A) \subset \mathbb{R}$.
Proof (i) \Rightarrow (ii). Let $X, Y \in \mathcal{A}$ be such that $X Y=A$ and $Y X=B$. Then, $A^{*}=Y^{*} X^{*}$ and $B=Y X=(Y X)^{*}=X^{*} Y^{*}$.
(ii) \Rightarrow (i). Since $\left(A^{*}\right)^{*}=A$, we can repeat the proof of the implication (i) \Rightarrow (ii) for the pair $\left\{A^{*}, B\right\}$.

Via (3.3) and the relation $\sigma(B)=\sigma(Y X) \subset \mathbb{R}$ we infer that $\sigma(A)=\sigma(X Y) \subset \mathbb{R}$.

Theorem 3.24 Let \mathcal{H} be an infinite-dimensional Hilbert space. If $A, B \in \mathcal{B}(\mathcal{H})$ are non-commutators and $A \sim B$, then $A-B \in \mathcal{J}$.

Proof Let $A=a I+J, B=b I+J_{1}$ for some $a, b \in \mathbb{C} \backslash\{0\}$ and certain operators $J, J_{1} \in \mathcal{J}$, see Theorem 2.2. Let $X, Y \in \mathcal{B}(\mathcal{H})$ be such that $A=X Y, B=Y X$. We have

$$
\begin{aligned}
X \cdot Y X \cdot Y & =X\left(b I+J_{1}\right) Y=b X Y+X J_{1} Y=a b I+b J+X J_{1} Y \\
& =(X Y)^{2}=(a I+J)^{2}=a^{2} I+2 a J+J^{2} .
\end{aligned}
$$

Note that the operators $b J+X J_{1} Y$ and $2 a J+J^{2}$ lie in \mathcal{J}. Therefore, $a=b$ and $A-B \in \mathcal{J}$.

Example If $A, B \in \mathbb{M}_{n}(\mathbb{C})$ and $A \sim B$, then $\operatorname{det}(A)=\operatorname{det}(B)$ and $\operatorname{tr}(A)=\operatorname{tr}(B)$. Let $\mathcal{A}=\mathcal{B}(\mathcal{H})$, where \mathcal{H} is a separable Hilbert space, $\operatorname{dim} \mathcal{H}=\infty$. Then, there exist operators $A \in \mathcal{A}^{+}$and $B \in \mathcal{A}$ such that $A \sim B, A \in \mathfrak{S}_{1}(\mathcal{H})$, but $B \notin \mathfrak{S}_{1}(\mathcal{H})$. Hint: for some projections $P, Q \in \mathcal{B}(\mathcal{H})$, we have $P Q P \in \mathfrak{S}_{1}(\mathcal{H})$, but $Q P \notin \mathfrak{S}_{1}(\mathcal{H})$, see [3, Remark 1]. Put $X=P$ and $Y=Q P$.

Acknowledgements The work was performed under the development program of Volga Region Mathematical Center (agreement no. 075-02-2022-882). The author wishes to give his thanks to the referees for useful remarks and advices.

References

1. Aluthge, A.: On p-hyponormal operators for $0<p<1$. Integral Equ. Oper. Theory 13(3), 307-315 (1990)
2. Berberian, S.K.: The algebra of thin operators is directly finite. Publ. Secc. Mat. Univ. Autòn. Barc. 26(2), 5-7 (1982)
3. Bikchentaev, A.: Majorization for products of measurable operators. Int. J. Theor. Phys. 37(1), 571-576 (1998)
4. Bikchentaev, A.M.: On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in C^{*}-algebras. Sb. Math. 199(3-4), 477-493 (2008)
5. Bikchentaev, A.M.: On a lemma of Berezin. Math. Notes 87(5-6), 768-773 (2010)
6. Bikchentaev, A.M.: Commutativity of projections and trace characterization on von Neumann algebras. Sib. Math. J. 51(6), 971-977 (2010)
7. Bikchentaev, A.M.: Commutation of projections and trace characterization on von Neumann algebras. II. Math. Notes 89(3-4), 461-471 (2011)
8. Bikchentaev, A.M.: Commutativity of operators and characterization of traces on C^{*}-algebras. Dokl. Math. 87(1), 79-82 (2013)
9. Bikchentaev, A.M.: Commutation of projections and characterization of traces on von Neumann algebras. III. Int. J. Theor. Phys. 54(12), 4482-4493 (2015)
10. Bikchentaev, A.M.: Concerning the theory of τ-measurable operators affiliated to a semifinite von Neumann algebra. Math. Notes 98(3-4), 382-391 (2015)
11. Bikchentaev, A.M.: On the convergence of integrable operators affiliated to a finite von Neumann algebra. Proc. Steklov Inst. Math. 293, 67-76 (2016)
12. Bikchentaev, A.M.: Trace inequalities for Rickart C^{*}-algebras. Positivity 25(5), 1943-1957 (2021)
13. Bikchentaev, A.M., Fawwaz, K.: Differences and commutators of idempotents in C^{*}-algebras. Russ. Math. 65(8), 13-22 (2021)
14. Bikchentaev, A.M.: The trace and commutators of measurable operators affiliated to a von Neumann algebra. J. Math. Sci. 252(1), 8-19 (2021)
15. Bikchentaev, A.M.: Essentially invertible measurable operators affiliated to a von Neumann algebra and commutators. Sib. Math. J. 63(2), 224-232 (2022)
16. Blackadar, B.: Operator algebras, theory of C^{*}-algebras and von Neumann algebras. In: Encyclopedia of Mathematical Sciences, Operator Algebras and Non-commutative Geometry, III, vol. 122. Springer, Berlin (2006)
17. Brown, A., Pearcy, C.: Structure of commutators of operators. Ann. Math. (2) 82(1), 112-127 (1965)
18. Chabbabi, F., Mbekhta, M.: Jordan product maps commuting with the λ-Aluthge transform. J. Math. Anal. Appl. 450(1), 293-313 (2017)
19. Chevalier, G.: Automorphisms of an orthomodular poset of projections. Int. J. Theor. Phys. 44(7), 985-998 (2005)
20. Cuntz, J., Pedersen, G.K.: Equivalence and traces on C^{*}-algebras. J. Funct. Anal. 33(2), 135-164 (1979)
21. Davidson, K.R.: C^{*}-Algebras by Examples. Fields Institute Monographs. American Mathematical Society, Providence (1996)
22. Dixmier, J.: C^{*}-Algebras and Their Representations (Russian). Translated from the French. Nauka, Moscow (1974)
23. Elliott, G.A., Robert, L., Santiago, L.: The cone of lower semicontinuous traces on a C^{*}-algebra. Am. J. Math. 133(4), 969-1005 (2011)
24. Fack, T.: Finite sums of commutators in C^{*}-algebras. Ann. Inst. Fourier Grenoble 32(1), 129-137 (1982)
25. Glazman, I.M., Ljubič, J.I.: Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form. MIT, Cambridge (1974)
26. Halmos, P.R.: A Hilbert Space Problem Book. Encyclopedia of Mathematics and its Applications, 17. Graduate Texts in Mathematics, vol. 19, 2nd edn. Springer, New York (1982)
27. Jafarian, A., Popov, A.I., Radjavi, H.: Common invariant subspaces from small commutators. Indiana Univ. Math. J. 67(1), 151-167 (2018)
28. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary Theory Graduate Studies in Mathematics, vol. 15. American Mathematics Society, Providence (1997)
29. Lord, S., Sukochev, F., Zanin, D.: Singular Traces: Theory and Applications. de Gruyter Studies in Mathematics, vol. 46. Walter de Gruyter GmbH, Berlin (2013)
30. Murphy, G.J.: C^{*}-Algebras and Operator Theory. Academic Press, Boston (1990)
31. Pop, C.: Finite sums of commutators. Proc. Am. Math. Soc. 130(10), 3039-3041 (2002)
32. Rørdam, M.: Fixed-points in the cone of traces on a C^{*}-algebra. Trans. Am. Math. Soc. 371(12), 8879-8906 (2019)
33. Sherstnev, A.N.: Methods of Bilinear Forms in Non-commutative Measure and Integral Theory (Russian). Fizmatlit, Moscow (2008)
34. Simon, B.: Trace Ideals and Their Applications. Mathematical Surveys and Monographs, vol. 120, 2nd edn. American Mathematical Society, Providence (2005)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: Communicated by M. S. Moslehian.
 \boxtimes Airat Bikchentaev
 Airat.Bikchentaev@kpfu.ru
 1 Kazan Federal University, 18 Kremlyovskaya Str., Kazan 420008, Russia

