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Abstract
Let H be a Hilbert space, dimH = +∞. Let X = U |X | be the polar decomposition
of an operator X ∈ B(H). Then, X is a non-commutator if and only if both U and
|X | are non-commutators. A Hermitian operator X ∈ B(H) is a commutator if and
only if the Cayley transform K(X) is a commutator. Let H be a Hilbert space and
dimH ≤ +∞, A, B, P ∈ B(H) and P = P2. If AB = λBA for some λ ∈ C\{1}
then the operator AB is a commutator. The operator AP is a commutator if and only
if PA is a commutator.
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1 Introduction

Dimension functions and traces on C∗-algebras are fundamental tools in the opera-
tor theory and its applications. Therefore, they have been actively studied in recent
decades, see [12, 14, 23, 29, 32, 34]. For a C∗-subalgebra A ⊂ B(H), put

A0 =
⎧
⎨

⎩
X ∈ A : X =

∑

n≥1

[Xn, X
∗
n] for (Xn)n≥1 ⊂ A

⎫
⎬

⎭
,

the series ‖ · ‖-converges. It is proved in [20, Theorem2.6] thatA0 coincides with the
zero-space of all finite traces onAsa. For a wide class of C∗-algebras that contains all
von Neumann algebras, we can consider only finite sums of the indicated form, see
[24]. Elements of unital C∗-algebras without tracial states can be represented as finite
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sums of commutators. Moreover, the number of commutators involved in these sums
is bounded and depends only on the given C∗-algebra [31]. The characterization of
traces onC∗-algebras is an urgent problem and attracts the attention of a large group of
researchers. Commutation relations allowed to obtain characterizations of the traces
in a broad class of weights on von Neumann algebras and C∗-algebras [6–9]. An
interesting problem is representation of elements of C∗-algebras via commutators of
special form [4, 13, 27].

The following results were obtained. Let H be a Hilbert space, dimH = +∞.
(1) Let a Hermitian operator X ∈ B(H) be a non-commutator and σ(X) be the
spectrum of X . Then, f (X) is a non-commutator for every continuous function
f : σ(X) → R with f (x) 
= 0 (Lemma 3.13). (2) Let X = U |X | be the polar
decomposition of an operator X ∈ B(H). Then, the following conditions are equiva-
lent: (i) X is a non-commutator; (ii)U and |X | are non-commutators (Theorem 3.15).
(3) For a Hermitian operator X ∈ B(H), the following conditions are equivalent: (i) X
is a commutator; (ii) the Cayley transformK(X) is a commutator (Theorem 3.17). (4)
LetH be a Hilbert space and dimH ≤ +∞, A, B ∈ B(H) and P ∈ B(H), P = P2. If
AB = λBA for some λ ∈ C\{1} then the operator AB is a commutator. The operator
AP is a commutator if and only if PA is a commutator (Theorem 3.19).

2 Preliminaries

LetA be an algebra,Aid = {A ∈ A : A2 = A} be the set of all idempotents inA. An
element X ∈ A is a commutator, if X = [A, B] = AB − BA for some A, B ∈ A.
For X ,Y ∈ A define their Jordan product by the equality X ◦ Y = XY+Y X

2 . For
A, B ∈ A we write A ∼ B if there exist X ,Y ∈ A so that XY = A, Y X = B (hence
A − B = [X ,Y ]). If A is unital and A, B ∈ A are similar then A ∼ B.

A C∗-algebra is a complex Banach ∗-algebra A such that ‖A∗A‖ = ‖A‖2 for
all A ∈ A. For a C∗-algebra A by Apr, Asa, and A+ we denote its projections
(A = A∗ = A2), Hermitian elements, and positive elements, respectively. If A ∈ A,
then |A| = √

A∗A ∈ A+. In aC∗-algebraA, two projections P and Q are∗-equivalent
if there exists an element X in A (necessarily a partial isometry) such that P = X∗X
and Q = XX∗. If R ∈ Aid then R ∼ T for some T ∈ Apr; if P, Q ∈ Apr and P ∼ Q
then P and Q are ∗-equivalent [21, Proposition IV.1.1]. As is well known, in a unital
C∗-algebra A, the Cayley transform

K(X) = X + iI

X − iI
= (X − iI )−1(X + iI ) = (X + iI )(X − iI )−1

of an element X ∈ Asa is a unitary element of A.
A mapping ϕ : A+ → [0,+∞] is called a trace on aC∗-algebraA, if ϕ(X +Y ) =

ϕ(X)+ϕ(Y ), ϕ(λX) = λϕ(X) for all X ,Y ∈ A+, λ ≥ 0 (moreover, 0·(+∞) ≡ 0);
ϕ(Z∗Z) = ϕ(Z Z∗) for all Z ∈ A. For a trace ϕ, define

M+
ϕ = {X ∈ A+ : ϕ(X) < +∞}, Mϕ = linCM

+
ϕ .
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The restriction ϕ|M+
ϕ
can always be extended by linearity to a functional on Mϕ ,

which we denote by the same letter ϕ.

Lemma 2.1 Let ϕ be a trace on a C∗-algebra A. Then, ϕ(AB) = ϕ(BA) for all
A ∈ Mϕ and B ∈ A.

Proof See, for example, [22, §6, item (iii) of Proposition 6.1.2]. ��
A positive linear functional ϕ onA with ‖ϕ‖ = 1 is called a state. A trace ϕ is called
faithful, if ϕ(X) = 0 (X ∈ A+) ⇒ X = 0.

LetH be aHilbert space over the fieldC,B(H) be the∗-algebra of all linear bounded
operators onH. An operator X ∈ B(H) possesses a left (resp., right) essential inverse
X−1
l (resp., X−1

r ) if X−1
l X = I+K (resp., XX−1

r = I+K ) for some compact operator
K ∈ B(H). We have Mtr = S1(H), the set of all trace class operators on H. By
Gelfand–NaimarkTheoremeveryC∗-algebra is isometrically isomorphic to a concrete
C∗-algebra of operators on a Hilbert spaceH [16, II.6.4.10]. For dimH = n < +∞,
the algebra B(H) can be identified with the full matrix algebra Mn(C).

Let H be an infinite-dimensional Hilbert space. The algebra B(H) is known to
contain a proper uniformly closed ideal J that contains all other proper uniformly
closed ideals of B(H), see [17, Section 6]. In case H is separable, J is the ideal
of compact operators. Combining Theorems 3 and 4 in [17], we get the following
assertion.

Theorem 2.2 (Brown–Pearcy Theorem) An operator X ∈ B(H) is a non-commutator
if and only if X = x I + J for some x ∈ C\{0} and J ∈ J .

If T ∈ B(H) and T = U |T | is its polar decomposition, the Aluthge transform

of T is the operator �(T ) defined as �(T ) = |T | 12U |T | 12 [1]. More generally, for
any real number λ ∈ [0, 1], the λ-Aluthge transformation is defined as �λ(T ) =
|T |λU |T |1−λ ∈ B(H) [18]. We have T ∼ �λ(T ) for any λ ∈ [0, 1] (hint: put
X = |T |λ and Y = U |T |1−λ).

3 Idempotents and commutators in C∗-algebras

Lemma 3.1 Let A be a unital algebra, let A, B ∈ A be such that ABA = λA for
some λ ∈ C\{0}.
(i) If A ∈ Aid then the idempotents A, λ−1AB and λ−1BA are pairwise similar.
(ii) If B ∈ Aid then the idempotents λ−1AB, λ−1BA and λ−1BAB are pairwise

similar.
(iii) If A, B ∈ Aid then A ∼ λ−1BAB. If, moreover, BAB = λB then A ∼ B.

Proof (i) The elements P = λ−1AB and Q = λ−1BA lie in Aid. We have PA = A
and AP = P (resp., QA = Q and AQ = A) and apply [13, Lemma 2]. Therefore, the
idempotents A and P (resp., A and Q) are similar. Since similarity is an equivalence
relation, the idempotents P and Q are also similar. IfA acts on a vector space E , then
by [19, Lemma 2], we have Im P = Im A and Ker Q = Ker A.
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(ii) The elements P = λ−1AB, Q = λ−1BA and R = λ−1BAB lie in Aid. We
have PR = P and RP = R (resp., QR = R and RQ = Q) and apply [13, Lemma
2]. Therefore, the idempotents P and R (resp., Q and R) are similar. Since similarity
is an equivalence relation, the idempotents P and Q are also similar. If A acts on a
vector space E then by [19, Lemma 2] we have Im Q = Im R and Ker P = Ker R.

(iii) Put X = λ−1AB and Y = BA. ��
Projections P, Q ∈ B(H) are called isoclinic with angle θ ∈ (0, π/2), if PQP =
cos2 θ P and QPQ = cos2 θ Q [33, Definition 10.4]. Thus, in this case, the idempo-
tents P , Q, cos−2 θ PQ, cos−2 θ QP are pairwise similar.

Example Consider the following complex 2 × 2 matrices:

P =
(
1 z
0 0

)

, Q =
(
1 0
z 0

)

, X =
(

λ μ

0 ν

)

.

Then, P, Q ∈ M2(C)id and PX P = λP , PQP = (1 + z2)P , QPQ = (1 + z2)Q.
For an arbitrary A ∈ Mn(C), there exists a pseudo-inverse B ∈ Mn(C) such that
ABA = A (see [30, Theorem 1.4.15]).

Lemma 3.2 Let A be an algebra, A, B ∈ Aid be such that ABA = λA and BAB =
λB for some λ ∈ C\{0, 1}. Then, the idempotents A, λ−1AB, B and λ−1BA are
pairwise similar and P = 1

1−λ
(A − B)2 ∈ Aid. We have [A, B]2k = λk(λ − 1)k P

and [A, B]2k+1 = λk(λ − 1)k[A, B] for all k ∈ N.
If J is an ideal in A then [A, B]n ∈ J ⇔ A, B ∈ J for all n ∈ N.

Proof By Lemma 3.1, the idempotents A, λ−1AB, B and λ−1BA are pairwise similar.
We have

[A, B]2 = ABA · B + BAB · A − ABA − BAB = −λ(A − B)2. (3.1)

On the other hand, for all A, B ∈ Aid, we have

[A, B]2 = (A − B)4 − (A − B)2.

Thus, by (3.1), we obtain (A− B)4 = (1−λ)(A− B)2. Multiply both sides of the last
equality by the number (1−λ)−2 and obtain P = 1

1−λ
(A−B)2 ∈ Aid. Since (A−B)2

commutes with A and B for all A, B ∈ Aid, we have PA = AP = A and PB =
BP = B. Since [A, B]2 = λ(λ − 1)P , we conclude that [A, B]2k = λk(λ − 1)k P
for all k ∈ N. Since [A, B]2k+1 = [A, B]2k · [A, B] = λk(λ − 1)k[A, B], the element
[A, B]2k+1 is a commutator for all k ∈ N.

Let J be an ideal in A, λ 
= 0, n ∈ N and [A, B]n ∈ J.
Step 1. If n is even then by the equality [A, B]2k = λk(λ−1)k P , we have (A−B)2 ∈

J and (1 − λ)A = A − ABA = A(A − B)2A ∈ J. Thus, A ∈ J.
Step 2. If n is odd then for the even number n + 1, we have [A, B]n+1 = [A, B]n ·

[A, B] ∈ J and apply Step 1. ��
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Example Consider the following complex 2 × 2 matrices:

P =
(
1 0
0 0

)

, Q =
(
1 z
0 0

)

.

Then, P, Q ∈ M2(C)id and PQP = P , QPQ = Q.

Theorem 3.3 Let ϕ be a faithful trace on a C∗-algebraA; let A, B ∈ Aid\{0} be such
that ABA = λA and BAB = λB for some λ ∈ C\{0, 1}. Then, [A, B]n 
= 0 for all
n ∈ N.

Proof It suffices to show that [A, B]n 
= 0 for all even n ∈ N.
Case 1: [A, B]2k /∈ Mϕ . Then, [A, B]2k 
= 0.
Case 2: [A, B]2k ∈ Mϕ . Then, by Lemma 3.2 we obtain A, B ∈ Mϕ . We have

ϕ(A), ϕ(B) ∈ R
+ by [10, Theorem 4.6] and recall that the trace ϕ is faithful. Now,

apply Lemma 3.2 and by Lemma 2.1 obtain

ϕ([A, B]2k) = λk(λ − 1)kϕ(P)

= −λk(λ − 1)k−1(ϕ(A) − ϕ(AB) + ϕ(B) − ϕ(BA))

= −λk(λ − 1)k−1(ϕ(A) − ϕ(ABA) + ϕ(B) − ϕ(BAB))

= λk(λ − 1)k(ϕ(A) + ϕ(B)) 
= 0.

Thus, [A, B]n 
= 0 for all n ∈ N. ��
Corollary 3.4 Let ϕ be a faithful tracial state on a C∗-algebra A, let A, B ∈ Aid\{0}
be such that ABA = λA and BAB = λB for some λ ∈ C\{0, 1}. Then, the element
[A, B]2n is a non-commutator for all n ∈ N.

Proof We have ϕ([A, B]2n) 
= 0 for all n ∈ N (see the proof of Theorem 3.3). ��
Theorem 2.2 allows us to state

Lemma 3.5 Let H be a Hilbert space, dimH = ∞. If operators X ,Y ∈ B(H) are
non-commutators then XY and X ◦ Y are non-commutators. In particular, Xn is a
non-commutator for every n ∈ N.

Theorem 3.6 LetH be a Hilbert space, dimH = +∞, and let an operator X ∈ B(H)

be a non-commutator. If A1, . . . , An, B1, . . . , Bn ∈ B(H) and A1B1, . . . , AnBn are
non-commutators, then the operator An · · · A1XB1 · · · Bn is a non-commutator.

Proof We apply Theorem 2.2. Let X = λI + J and Ak Bk = λk I + Jk for some
λ, λk ∈ C\{0} and operators J , Jk ∈ J for k = 1, . . . , n. The proof is by induction.
For n = 1, we have

A1XB1 = A1(λI + J )B1 = λA1B1 + A1 J B1 = λ(λ1 I + J1) + A1 J B1

= λλ1 I + λJ1 + A1 J B1.

Note that λλ1 
= 0 and the operator λJ1+ A1 J B1 lies inJ . The case of n ≥ 2 follows
by induction. ��
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Corollary 3.7 If A, B ∈ B(H) and the operator AB is a non-commutator, then the
operator An Bn is a non-commutator for every n ∈ N.

Lemma 3.8 (on division) LetH be a Hilbert space, dimH = +∞ and X ,Y ∈ B(H).

(i) If XY and X (resp., Y ) are non-commutators, then Y (resp., X) is a non-
commutator.

(ii) If X ◦ Y and X (resp., Y ) are non-commutators then Y (resp., X) is a non-
commutator.

Proof (i) Let operators XY and X be non-commutators. Then, by Theorem 2.2, we
have

XY = λI + J , X = μI + J1

for some λ,μ ∈ C\{0} and certain operators J , J1 ∈ J . Therefore,

λI + J = XY = (μI + J1)Y = μY + J1Y

and Y = λ
μ
I + J2 with the operator J2 = 1

μ
(K − J1Y ) ∈ J . Thus, Y is a non-

commutator by Theorem 2.2.
In particular, if X ∈ B(H) is left (resp., right) invertible, then X is a non-commutator

if and only if X−1
l (resp., X−1

r ) is a non-commutator.
(ii) Let operators X ◦ Y and X be non-commutators. Then, by Theorem 2.2, we

have

X ◦ Y = λI + J , X = μI + J1

for some λ,μ ∈ C\{0} and certain operators J , J1 ∈ J . Therefore,

λI + J = X ◦ Y = (μI + J1)Y + Y (μI + J1)

2
= μY + J1Y + Y J1

2

and Y = λ
μ
I + J2 with the operator J2 = 1

μ
(J − J1 ◦ Y ) ∈ J . Thus, Y is a non-

commutator by Theorem 2.2. ��
Corollary 3.9 [15, Corollary 14] IfH is separable and an operator X ∈ B(H) admits
a left (resp., right) essential inverse X−1

l (resp., X−1
r ) then X−1

l (resp., X−1
r ) is a

non-commutator if and only if X is a non-commutator.

Corollary 3.10 Let λ ∈ C be a regular point of X ∈ B(H) and Rλ = (X − λI )−1 be
the resolvent of X. If X is a non-commutator, then Rλ is a non-commutator.

Proof By Theorem 2.2. we have X = x I + J for some x ∈ C\{0} and an operator
J ∈ J . Since every operator from J is non-invertible, we infer that x 
= λ and apply
Corollary 3.9. ��
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Corollary 3.11 LetH be a Hilbert space, dimH = ∞. Let A, B ∈ B(H) be such that
ABA = λA+ J for someλ ∈ C\{0} and an operator J ∈ J . If A is a non-commutator
then B is also a non-commutator.

Proof Note that an operator λA + J is a non-commutator, see Theorem 2.2. Apply
Lemma 3.8 with X = AB, Y = A and conclude that AB is non-commutator. Again
apply Lemma 3.8 with X = A, Y = B and infer that B is non-commutator. ��
Lemma 3.12 Let J be a proper uniformly closed ideal in a unital C∗-algebra A. Let
a Hermitian element X ∈ A be of the form X = x I + J1, where x ∈ R and J1 ∈ J .
The equality f (X) = f (x)I + J holds for any continuous real-valued function f on
the spectrum σ(X), here J ∈ J .

Proof Since the ideal J is proper, I /∈ J , the elements of J are irreversible and x ∈
σ(X). Since Xn = xn I+Jn with Jn ∈ J , for a polynomial p(t) = a0+a1t+· · ·+aktk

we have p(X) = a0 I + a1X + · · · + ak Xk = p(x)I + J ′, where J ′ ∈ J . By
the Weierstrass Theorem, there exists a sequence {pm}∞m=1 of polynomials, which
converges uniformly on σ(X) to the function f as m → ∞. For each m ∈ N,
pm(X) = pm(x)I + J (m), where J (m) ∈ J . Since pm(X) → f (X) and pm(x)I →
f (x)I as m → ∞, the sequence {J (m)}∞m=1 also converges. The limit of {J (m)}∞m=1
lies in J , because J is uniformly closed. It follows that f (X) = f (x)I + J with
J ∈ J . ��
By Lemma 3.12 and Theorem 2.2, we get

Lemma 3.13 Let H be an infinite-dimensional Hilbert space. Let an operator X ∈
B(H)sa be a non-commutator, X = x I + J for some x ∈ R\{0} and J ∈ J (see
Theorem 2.2). Then, f (X) is a non-commutator for every continuous function f :
σ(X) → R with f (x) 
= 0.

Remark 3.14 In particular, an operator X ∈ B(H)+ is a non-commutator if and only
if an operator Xq is a non-commutator for some (consequently, for all) q > 0 (recall
that dimH = ∞). This fact also follows by [5, Remark 4] (hint: consider the odd
continuation of the function f (t) = tq from [0,+∞) to R). IfH is a separable space
and an operator X ∈ B(H)+ is a non-commutator, then the projection X0 on the

closure of the range of X is a non-commutator. Indeed, if 0 ≤ X ≤ I , then {X 1
n }∞n=1

is a monotone increasing sequence of operators whose strong-operator limit is the
projection X0 on the closure of the range of X [28, Lemma 5.1.5]. If X ∈ B(H)+ is a
non-commutator, then dim X0⊥H < ∞ and X0 = I − X0⊥ is a non-commutator by
Theorem 2.2.

Theorem 3.15 Let H be an infinite-dimensional Hilbert space, and let X = U |X | be
the polar decomposition of an operator X ∈ B(H). Then, the following conditions
are equivalent:

(i) X is a non-commutator;
(ii) U and |X | are non-commutators.
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Proof (i)⇒(ii). By Theorem 2.2, we have X = x I + J for some x ∈ C\{0} and
an operator J ∈ J . Since an operator J ∗ is lies in J , X∗ = x I + J ∗ is a non-
commutator. Now, by Lemma 3.5, the operator X∗X is a non-commutator. Therefore,
|X | = √

X∗X is a non-commutator by Lemma 3.13 with f (t) = √
t , t ≥ 0. Since

X = U |X |, an operator U is a non-commutator by Lemma 3.8.
(ii)⇒(i). Since X = U |X |, the assertion follows by Lemma 3.5. ��

Corollary 3.16 Let H be an infinite-dimensional Hilbert space, and let T = U |T | be
the polar decomposition of an operator T ∈ B(H).

(i) If T is a non-commutator, then for any real number λ ∈ [0, 1], the λ-Aluthge
transformation �λ(T ) = |T |λU |T |1−λ is a non-commutator.

(ii) If |T | and �λ(T ) for some number λ ∈ [0, 1] are non-commutators, then T is a
non-commutator.

Proof (i) By Theorem 3.15, the operators U and |T | are non-commutators. Then, we
apply Theorem 3.6 with A1 = |T |λ, B1 = |T |1−λ and X = U .

(ii) For λ ∈ [0, 1], the operators |T |λ, |T |1−λ are non-commutators, see Remark
3.14. For X = |T |λ, Y = U |T |1−λ Lemma 3.8 implies that U |T |1−λ is non-
commutator. Thus, T = U |T |1−λ · |T |λ is non-commutator as a product of two
non-commutators by Lemma 3.5. ��

For T ∈ B(H), dimH < ∞, we have tr(T ) = tr(�λ(T )) for any number λ ∈ [0, 1].
Thus, T is a commutator if and only if�λ(T ) is a commutator for some (consequently,
for all) λ ∈ [0, 1] by [26, Ch. 24, Problem 230].

Example Let X = U |X | be the polar decomposition of a matrix X ∈ M2(C). If X

is an invertible commutator, then U is a commutator. Indeed, we have X =
(
0 b
a 0

)

in some basis in C
2 by [25, Ch. II, Problem 209] and ab 
= 0. Let a = eiα|a|,

b = eiβ |b| for 0 ≤ α, β < 2π . Then, |X | = √
X∗X = diag(|b|, |a|). For the

unitary matrixU = [ui j ]2i, j=1 from equality X = U |X | =
(
u11|b| u12|a|
u21|b| u22|a|

)

, we have

u11 = u22 = 0, u12 = eiα , u21 = eiβ and U is a commutator by [25, Ch. II, Problem
209].

Theorem 3.17 LetH be an infinite-dimensional Hilbert space. Then, for X ∈ B(H)sa,
the following conditions are equivalent:

(i) X is a commutator;
(ii) the Cayley transform K(X) is a commutator.

Proof (ii)⇒(i). Let X be a non-commutator. By Theorem 2.2, we have X = x I+ J for
some x ∈ R\{0} and aHermitian operator J ∈ J . The operators X±iI = (x±i)I+ J
are non-commutators by Theorem 2.2. Therefore, the operator (X − iI )−1 is a non-
commutator by Corollary 3.9 and we apply Lemma 3.5. Thus, the Cayley transform
K(X) is a non-commutator.
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(i)⇒(ii). LetK(X) be a non-commutator. By Theorem 2.2 for the unitary operator
K(X), we have K(X) = x I + J for some x ∈ C\{0} with |x | = 1 and an operator
J ∈ J . We have

X + iI = K(X)(X − iI ) = (x I + J )(X − iI ) = x X − ix I + J X − iJ . (3.2)

Therefore, if x = 1, then I ∈ J ; if x = −1 then X ∈ J . In both cases, we arrive to a
contradiction. Thus, x 
= ±1. By (3.2), we have (1 − x)X = −i(1 + x)I + J X − iJ
and apply Theorem 2.2. Thus, X is a non-commutator. ��

Let A be an algebra, let A, B ∈ A be such that AB = −BA, i.e., A and B
anticommute. Then, AB and BA are commutators: AB = [ A2 , B], BA = [B, A

2 ].
Lemma 3.18 Let A be a unital algebra, let A, B ∈ A be such that AB = λBA for
some λ ∈ C\{0}. Then, we have the spectral relation σ(AB) = σ(BA) = λσ(BA).
Moreover, if B is invertible, then σ(A) = λσ(A).

Proof We have λσ(BA) = σ(λBA) = σ(AB). Since

σ(XY ) ∪ {0} = σ(Y X) ∪ {0} for all X ,Y ∈ A, (3.3)

see [26, Ch. 9, Problem 76], we obtain λσ(BA) ∪ {0} = σ(BA) ∪ {0}. Then, we
consider two cases: 1) 0 ∈ σ(BA), and 2) 0 /∈ σ(BA). In both cases, we have
λσ(BA) = σ(BA). Thus,

σ(AB) = λσ(BA) = σ(BA) = λσ(AB).

For an invertible B, we have A = AB ·B−1 = λBA·B−1 and σ(A) = λσ(BAB−1) =
λσ(A) since similarity preserves spectra [26, Ch. 9, Problem 75]. ��

In particular, if A = Mn(C) and det(AB) 
= 0, then λn = 1 by the theorem on the
determinant of a matrix product.

Example In M2(C) for matrices A = diag(1,−1) and B =
(
0 x
y 0

)

, we have AB =
−BA. Consider the primitive cubic roots of 1: ω1 = 1, ω2 = − 1

2 − i
√
3
2 , ω3 =

− 1
2 + i

√
3
2 . InM3(C) for the matrices

A =
⎛

⎝
0 0 ω1
ω2 0 0
0 ω3 0

⎞

⎠

and B = diag(ω1, ω2, ω3), we have AB = ω3BA.

Theorem 3.19 Let H be a Hilbert space and dimH ≤ +∞, A, B ∈ B(H) and
P ∈ B(H)id.

(i) If AB = λBA for some λ ∈ C\{1}, then the operator AB is a commutator.
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(ii) If dimH < +∞, then AB is a commutator if and only if B A is a commutator.
(iii) The operator AP is a commutator if and only if P A is a commutator.

Proof (i) For λ = 0, the assertion is trivial. Assume that λ 
= 0 and consider two cases.
Case 1: let dimH < +∞. Then,

tr(BA) = tr(AB) = tr(λBA) = λtr(BA)

and tr(BA) = tr(AB) = 0. Thus, AB and BA are commutators by [26, Ch. 24,
Problem 230].

Case 2: let dimH = +∞. Assume that the operator AB is a non-commutator.
Then,

AB = μI + J (3.4)

for some μ ∈ C\{0} and an operator J ∈ J by Theorem 2.2. Multiply both sides of
equality (3.4) by the operator A from the right and obtain

ABA = μA + J A. (3.5)

Since λBA = μI + J , multiply both sides of the last equality by the operator A from
the left and obtain

λABA = μA + AJ . (3.6)

By (3.5), we have λABA = μλA + λJ A; subtract this relation term by term from
equality (3.6) and conclude that μ(λ − 1)A = AJ − λJ A. Therefore, A ∈ J . Thus
AB ∈ J and we have a contradiction with representation (3.4).

(ii) If dimH < +∞, then tr(BA) = tr(AB) and the assertion follows by [26, Ch.
24, Problem 230].

(iii) Let dimH = +∞. Assume that the operator AP is a non-commutator. Then,
by Theorem 2.2, we have AP = x I + J for some x ∈ C\{0} and an operator J ∈ J .
Then, for the idempotent P⊥ = I − P , we conclude that

0 = AP · P⊥ = x P⊥ + J P⊥.

Hence, P⊥ ∈ J and P = I−P⊥ is a non-commutator by Theorem 2.2. Since AP and
P are non-commutators, the operator A is a non-commutator via Lemma 3.8. Since A
and P are non-commutators, the operator PA is a non-commutator via Lemma 3.5.

For the proof of the inverse implication, note that if PA is a non-commutator,
then (PA)∗ = A∗P∗ is also a non-commutator by Theorem 2.2. Recall that P∗ ∈
B(H)id and by the preceding part of the proof P∗A∗ is a non-commutator. Therefore,
(P∗A∗)∗ = AP is a non-commutator by Theorem 2.2. ��

The condition P ∈ B(H)id is essential in Theorem 3.19. If H is separable and
dimH = +∞, then there exists a partial isometry A ∈ B(H) such that A∗A = I and
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the operators AA∗, I − AA∗ are non compact (hence by Theorem 2.2 we conclude
that A∗A is a non-commutator, but AA∗ is a commutator).

Corollary 3.20 Let dimH = n < +∞ and matrices A, B ∈ B(H) be such that
AB = λBA for some λ ∈ C\{1}.
(i) AB and BA are unitarily equivalent to matrices with zero diagonal.
(ii) We have tr(|I + zAB|) ≥ n and tr(|I + zBA|) ≥ n for all z ∈ C.

Proof (i) Follows by [25, Ch. II, Problem 209].
(ii) Follows by [11, Theorem 4.8]. ��

Theorem 3.21 Let H be a Hilbert space, U ∈ B(H) be an isometry.

(i) If A ∈ B(H) is a non-commutator, then the operatorU∗AU is a non-commutator.
(ii) IfH is separable and U is a non-commutator, then U is unitary.

Proof If dimH < +∞, then every isometry U ∈ B(H) is unitary. If A ∈ B(H) is a
non-commutator, then

0 
= tr(A) = tr(U∗AU )

and U∗AU is a non-commutator by [26, Ch. 24, Problem 230].
Assume that dimH = +∞. Then, (i) follows by Theorem 2.2. For the proof of

(ii), note that U = x I + K for some x ∈ C\{0} and a compact operator K ∈ B(H),
i.e., U is a thin operator. By Proposition of [2] via U∗U = I , we have UU∗ = I . ��
Theorem 3.22 Let A be an algebra and A, B ∈ A be such that A ∼ B. Let n ∈ N

and pn(t) = ∑n
k=1 akt

k be a polynomial without a constant term, qn+1(t) = tpn(t).
Then,

(i) pn(A) ∼ pn(B) and pn(A) − pn(B) is a commutator;
(ii) if J is an ideal in A and pn(A) ∈ J, then qn+1(B) ∈ J;
(iii) if Am = pn(A) for some m ∈ N, then Bm+1 = qn+1(B).

Proof Let X ,Y ∈ A be such that XY = A and Y X = B.
(i) For Z = an(XY )n−1X + an−1(XY )n−2X + · · · + a1X , we have pn(A) = ZY

and pn(B) = Y Z . Thus, pn(A) ∼ pn(B) and pn(A) − pn(B) = [Z ,Y ].
(ii) Let J be an ideal in A and pn(A) ∈ J. Then,

qn+1(B) =
n+1∑

k=2

ak−1B
k =

n+1∑

k=2

ak−1(Y X)k = Y

(
n∑

k=1

ak(Y X)k

)

X

= Y pn(A)X ∈ J.

(iii) We have (see the proof of item (ii))

qn+1(B) = Y pn(A)X = Y AmX = Y (XY )mX = (Y X)m+1 = Bm+1.

��
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Let A be a C∗-algebra and A, B ∈ A be such that A ∼ B. By relation (3.3), we have
σ(A) ∪ {0} = σ(B) ∪ {0}.
Theorem 3.23 Let A be a ∗-algebra. Then, for A ∈ A and B ∈ Asa the following
conditions are equivalent:

(i) A ∼ B;
(ii) A∗ ∼ B.

Under these conditions, we have σ(A) ⊂ R.

Proof (i)⇒(ii). Let X ,Y ∈ A be such that XY = A and Y X = B. Then, A∗ = Y ∗X∗
and B = Y X = (Y X)∗ = X∗Y ∗.

(ii) ⇒(i). Since (A∗)∗ = A, we can repeat the proof of the implication (i)⇒(ii) for
the pair {A∗, B}.

Via (3.3) and the relation σ(B) = σ(Y X) ⊂ R we infer that σ(A) = σ(XY ) ⊂ R.
��

Theorem 3.24 Let H be an infinite-dimensional Hilbert space. If A, B ∈ B(H) are
non-commutators and A ∼ B, then A − B ∈ J .

Proof Let A = aI + J , B = bI + J1 for some a, b ∈ C\{0} and certain operators
J , J1 ∈ J , see Theorem 2.2. Let X ,Y ∈ B(H) be such that A = XY , B = Y X . We
have

X · Y X · Y = X(bI + J1)Y = bXY + X J1Y = abI + bJ + X J1Y

= (XY )2 = (aI + J )2 = a2 I + 2aJ + J 2.

Note that the operators bJ + X J1Y and 2aJ + J 2 lie in J . Therefore, a = b and
A − B ∈ J . ��
Example If A, B ∈ Mn(C) and A ∼ B, then det(A) = det(B) and tr(A) = tr(B).
Let A = B(H), whereH is a separable Hilbert space, dimH = ∞. Then, there exist
operators A ∈ A+ and B ∈ A such that A ∼ B, A ∈ S1(H), but B /∈ S1(H). Hint:
for some projections P, Q ∈ B(H), we have PQP ∈ S1(H), but QP /∈ S1(H), see
[3, Remark 1]. Put X = P and Y = QP .
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