Form of presentation | Articles in international journals and collections |
Year of publication | 2019 |
Язык | английский |
|
Bikchentaev Ayrat Midkhatovich, author
|
Bibliographic description in the original language |
Bikchentaev A.M. Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras / A.M. Bikchentaev // Lobachevskii Journal of Mathematics. - 2019. - Vol. 40, No. 10. - P. 1450–1454. |
Annotation |
Let τ be a faithful normal semifinite trace on a von Neumann algebraM, and M^u be a unitary part of M. We prove a new property of rearrangements of some tripotents in M. If V ∈M is an isometry (or a coisometry) and U − V is τ-compact for some U ∈M^u then V ∈M^u. Let M
be a factor with a faithful normal trace τ on it. If
V ∈M^{is} an isometry (or a coisometry) and U − V
is compact relative toMfor some U ∈M^u then V ∈M^u. We also obtain some corollaries. |
Keywords |
Hilbert space, linear operator, isometry, unitary operator, idempotent, tripotent, projection, compact operator, von Neumann algebra, trace, rearrangement |
The name of the journal |
Lobachevskii Journal of Mathematics
|
On-line resource for training course |
http://dspace.kpfu.ru/xmlui/bitstream/handle/net/151916/LOJM1450.pdf?sequence=1&isAllowed=y
|
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=210041&p_lang=2 |
Resource files | |
|
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Bikchentaev Ayrat Midkhatovich |
ru_RU |
dc.date.accessioned |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2019 |
ru_RU |
dc.identifier.citation |
Bikchentaev A.M. Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras / A.M. Bikchentaev // Lobachevskii Journal of Mathematics. - 2019. - Vol. 40, No. 10. - P. 1450–1454. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=210041&p_lang=2 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
Let τ be a faithful normal semifinite trace on a von Neumann algebraM, and M^u be a unitary part of M. We prove a new property of rearrangements of some tripotents in M. If V ∈M is an isometry (or a coisometry) and U − V is τ-compact for some U ∈M^u then V ∈M^u. Let M
be a factor with a faithful normal trace τ on it. If
V ∈M^{is} an isometry (or a coisometry) and U − V
is compact relative toMfor some U ∈M^u then V ∈M^u. We also obtain some corollaries. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
linear operator |
ru_RU |
dc.subject |
isometry |
ru_RU |
dc.subject |
unitary operator |
ru_RU |
dc.subject |
idempotent |
ru_RU |
dc.subject |
tripotent |
ru_RU |
dc.subject |
projection |
ru_RU |
dc.subject |
compact operator |
ru_RU |
dc.subject |
von Neumann algebra |
ru_RU |
dc.subject |
trace |
ru_RU |
dc.subject |
rearrangement |
ru_RU |
dc.title |
Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|