Kazan (Volga region) Federal University, KFU
KAZAN
FEDERAL UNIVERSITY
 
REARRANGEMENTS OF TRIPOTENTS AND DIFFERENCES OF ISOMETRIES IN SEMIFINITE VON NEUMANN ALGEBRAS
Form of presentationArticles in international journals and collections
Year of publication2019
Языканглийский
  • Bikchentaev Ayrat Midkhatovich, author
  • Bibliographic description in the original language Bikchentaev A.M. Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras / A.M. Bikchentaev // Lobachevskii Journal of Mathematics. - 2019. - Vol. 40, No. 10. - P. 1450–1454.
    Annotation Let τ be a faithful normal semifinite trace on a von Neumann algebraM, and M^u be a unitary part of M. We prove a new property of rearrangements of some tripotents in M. If V ∈M is an isometry (or a coisometry) and U − V is τ-compact for some U ∈M^u then V ∈M^u. Let M be a factor with a faithful normal trace τ on it. If V ∈M^{is} an isometry (or a coisometry) and U − V is compact relative toMfor some U ∈M^u then V ∈M^u. We also obtain some corollaries.
    Keywords Hilbert space, linear operator, isometry, unitary operator, idempotent, tripotent, projection, compact operator, von Neumann algebra, trace, rearrangement
    The name of the journal Lobachevskii Journal of Mathematics
    On-line resource for training course http://dspace.kpfu.ru/xmlui/bitstream/handle/net/151916/LOJM1450.pdf?sequence=1&isAllowed=y
    Please use this ID to quote from or refer to the card https://repository.kpfu.ru/eng/?p_id=210041&p_lang=2
    Resource files 
    File name Size (MB) Format  
    LOJM1450.pdf 0,47 pdf show / download

    Full metadata record