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Abstract—Let τ be a faithful normal semifinite trace on a von Neumann algebra M, and Mu be a
unitary part of M. We prove a new property of rearrangements of some tripotents in M. If V ∈ M
is an isometry (or a coisometry) and U − V is τ-compact for some U ∈ Mu then V ∈ Mu. Let M
be a factor with a faithful normal trace τ on it. If V ∈ M is an isometry (or a coisometry) and U − V
is compact relative to M for some U ∈ Mu then V ∈ Mu. We also obtain some corollaries.
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1. INTRODUCTION

A bounded linear operator A on a Hilbert space H is called a tripotent if A = A3, an idempotent
if A = A2, and a projection if A = A2 = A∗. Let P and Q be idempotents on H. Various properties of
the difference P −Q (invertibility, Fredholm property, trace-class property, positivity, etc.) were studied
in [1–11]. Every tripotent is the difference P −Q of some idempotents P and Q with PQ = QP = 0 [7,
Proposition 1]. Hence tripotents inherit some properties of idempotents [8].

The results obtained in this paper are as follows. Let τ be a faithful normal semifinite trace on a
von Neumann algebra M, I be the unit of M. Denote by μt(X) a rearrangement of an operator
X ∈ M, and by Mpr, Mid and Mu the subsets of projections, idempotents, and unitary operators
(A∗A = AA∗ = I) in M, respectively.

For every P ∈ Mid there exists a unique decomposition P = ˜P +Z, with ˜P ∈ Mpr and nilpotent Z ∈
M, Z2 = 0, moreover, Z ˜P = 0, ˜PZ = Z, see [9, Theorem 1.3]. Let a tripotent A ∈ M be such that A =

P −Q with P ∈ Mid, Q ∈ Mpr and PQ = QP = 0. Let P = ˜P + Z be the decomposition described
above. Then ˜PQ = 0 and for R = ˜P +Q ∈ Apr, and for all t > 0 we have μt(A) = μt(A)χ[0,τ(R))(t) ≥
μt(R) = χ[0,τ(R))(t) (Theorem 1); here χB is the indicator function of a set B ⊂ R. The condition
Q = Q∗ is essential in Theorem 1. Corollary 1 gives an application to F-normed symmetic spaces on
(M, τ).

If V ∈ M is an isometry (or a coisometry) and U − V is τ-compact for some U ∈ Mu then V ∈ Mu

(Theorem 3). Let a number λ ∈ C with |λ| = 1 and a τ-compact operator K ∈ M be such that an
operator λI +K is an isometry. Then the operator K is normal (Corollary 3). Let M be a factor with a
faithful normal trace τ on it. If V ∈ M is an isometry (or a coisometry) and U − V is compact relative to
M for some U ∈ Mu then V ∈ Mu (Theorem 4).
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2. DEFINITIONS AND NOTATION

Let H be a Hilbert space over the field C, and let B(H) be the ∗-algebra of all bounded linear operators
on H. An operator A ∈ B(H) is said to be an isometry, if A∗A = I; a coisometry, if A∗ is an isometry;
a semiorthogonal projection, if A∗A = (A+A∗)/2 [10, 11]. The commutant of a set X ⊂ B(H) is
defined as the set

X ′ = {Y ∈ B(H) : XY = Y X for all X ∈ X}.
By a von Neumann algebra acting on a Hilbert space H we mean a ∗-subalgebra M of the algebra
B(H), for which M = M′′. Let I be the unit of an algebra M.

For a von Neumann algebra M, by Mpr, Mid, Mtri, Mu and M+ we denote the subsets of
projections (A = A2 = A∗), idempotents (A = A2), tripotents (A = A3), unitary elements (A∗A =

AA∗ = I) and positive elements of M, respectively. IfA ∈ M, then |A| =
√
A∗A ∈ M+. A formula A =

2T − I defines a bijection between the set Miso of all isometries and the set Msp of all semiorthogonal
projections.

By a trace on a von Neumann algebra M we mean a mapping ϕ : M+ → [0,+∞] such that

ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X) for all X,Y ∈ M+, λ ≥ 0

(here 0 · (+∞) ≡ 0), and

ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M.

A trace ϕ is said to be faithful, if ϕ(X) = 0 ⇒ X = 0 for X ∈ M+; semifinite, if ϕ(X) = sup{ϕ(Y ) :
Y ∈ M+, Y ≤ X, ϕ(Y ) < +∞} for every X ∈ M+; normal, if Xi ↗ X (Xi,X ∈ M+) ⇒ ϕ(X) =
sup
i

ϕ(Xi).

An operator A ∈ M is hyponormal, if A∗A ≥ AA∗; normal, if A∗A = AA∗. An operator A ∈ M is
said to be compact relative to a semifinite von Neumann algebra M, if it belongs to the two-sided
closed ideal generated by the finite projections of M.

A von Neumann algebra M is said to be a factor, if M∩M′ = {λI : λ ∈ C}.
Let τ be a faithful normal semifinite trace on a von Neumann algebra M. Denote by μt(X) a

rearrangement of an operator X ∈ M, i.e. nonincreasing right continuous function μ(X) : (0,+∞) →
[0,+∞), given by the formula

μt(X) = inf{||XP || : P ∈ Mpr, τ(I − P ) ≤ t}, t > 0.

Define μ∞(X) = lim
t→+∞

μt(X) for X ∈ M. The set M0 = {X ∈ M : μ∞(X) = 0} is an ideal of τ-

compact operators in M. Every operator X ∈ M0 is compact relative to the algebra M [12, p. 31].
Lemma 1 (see [13]). Let X,Y ∈ M. Then
1) μt(X) = μt(|X|) = μt(X

∗) for all t > 0;
2) if |X| ≤ |Y | then μt(X) ≤ μt(Y ) for all t > 0;
3) μs+t(XY ) ≤ μs(X)μt(Y ) for all s, t > 0;
4) μt(f(|X|)) = f(μt(X)) for all continuous increasing functions f : R+ → R

+ and t > 0;
5) μ0+(X) = lim

t→0+
μt(X) = sup

t>0
μt(X) = ||X||.

One can define a rearrangement for every τ-measurable operator X, i.e. for every X ∈ ˜M, see [13].
An F-normed subspace E ⊂ ˜M is said to be a symmetric F-normed space on (M, τ), if

Y ∈ E ,X ∈ ˜M and μ(X) ≤ μ(Y ) ⇒ X ∈ E and ||X||E ≤ ||X||E .

Let m be a linear Lebesgue measure on R. A noncommutative Lp-Lebesgue space (0 < p < +∞)
affiliated with (M, τ) can be defined as

Lp(M, τ) = {X ∈ ˜M : μ(X) ∈ Lp(R
+,m)}

with the F-norm (the norm for 1 ≤ p < +∞) ||X||p = ||μ(X)||p, X ∈ Lp(M, τ).
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If M = B(H) and τ = tr is the canonical trace then M0 coincides with the ideal S(H) of all compact
operators on H, and

μt(X) =

∞
∑

n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is a sequence of the operator X s-numbers [14, Ch. 1]; here χA is the indicator
function of a set A ⊂ R. Then the space Lp(M, τ) is a Shatten–von Neumann ideal Sp(H), 0 < p < ∞.

3. ON GENERALIZED SINGULAR NUMBERS OF TRIPOTENTS

For every P ∈ Mid there exists a unique decomposition P = ˜P + Z, with ˜P ∈ Mpr and nilpotent
Z ∈ M, Z2 = 0, moreover, Z ˜P = 0, ˜PZ = Z, see [9, Theorem 1.3]. For every A ∈ Mtri there exists a
unique pair P,Q ∈ Mid such that A = P −Q and PQ = QP = 0 [7, Proposition 1].

Let τ be a faithful normal semifinite trace on a von Neumann algebra M. If A ∈ Mtri and A = A∗,
then A = P −Q with P,Q ∈ Mpr and PQ = 0 [7, Corollary 3]. We have A2 = |A| = P +Q ∈ Mpr and
item 1) of Lemma 1 yields

μt(A) = μt(|A|) = μt(P +Q) = χ(0,τ(P+Q))(t) for all t > 0.

Theorem 1. Let τ be a faithful normal semifinite trace on a von Neumann algebra M. Let
A ∈ Mtri be such that A = P −Q with P ∈ Mid, Q ∈ Mpr and PQ = QP = 0. Let P = ˜P + Z be
the decomposition described above. Then ˜PQ = 0 and for R = ˜P +Q ∈ Mpr, and for all t > 0 we
have

μt(A) = μt(A)χ[0,τ(R))(t) ≥ μt(R) = χ[0,τ(R))(t). (1)

Proof. We have

PQ = ˜PQ+ ZQ = 0, (2)

and passing to adjoint operators, we conclude that Q ˜P +QZ∗ = 0. Now from the equality QP =

Q ˜P +QZ = 0 we have QZ = QZ∗. Multiplying both sides of the last equality from the left by the
operator ZQ, we obtain 0 = QZ∗ZQ = |ZQ|2. Hence ZQ = 0 and by (2) we obtain ˜PQ = 0. Therefore,
R = ˜P +Q ∈ Mpr. Since A2 ∈ Mid for every A ∈ Mtri, we infer that A2 = R+Z is the decomposition
described above by [9, Theorem 1.3]. It is easy to see that ˜PZ∗ = (Z ˜P )∗ = 0 and

AA∗ = ( ˜P + Z −Q)( ˜P + Z∗ −Q) = ˜P +Q+ ZZ∗ = R+ ZZ∗.

For all t > 0 we have μt(R) = χ[0,τ(R))(t) ∈ {0, 1} and

μt(A) = μt(|A∗|) =
√

μt(|A∗|2) =
√

μt(R+ ZZ∗) ≥
√

μt(R) = μt(R)

by items 1), 2) and 4) of Lemma 1 and monotonocity of the real function f(λ) =
√
λ on R

+. Note that
RA = A. If τ(R) = +∞, then (1) holds. If a = τ(R) < +∞, then b = τ( ˜P ) = τ(P ) = a− τ(Q) [15,
Theorem 4.6] and μt(R) = χ[0,a)(t) for all t > 0. Let t > a be arbitrary and s ∈ [0, 1] be such that st > a.
Then

μt(A) = μt(RA) ≤ μst(R)μ(1−s)t(A) = 0

by item 3) of Lemma 1. Therefore, (1) holds and Theorem 1 is proved. �

Remark 1. If τ(R) < ∞ then by (1) we have A ∈ M0. If Q = 0 then by Theorem 1 for P ∈ Mid we
obtain μt(P ) ⊂ {0} ∪ [1, ||P ||], cf. with [16, Lemma 3.8].

Remark 2. The condition Q = Q∗ is essential in Theorem 1. Consider the idempotents

P =

⎛

⎝

1 1

0 0

⎞

⎠ , Q =

⎛

⎝

0 −1

0 1

⎞

⎠
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in (M2(C), tr). Then PQ = QP = 0 and for the tripotent A = P −Q we have μt(A) =
√

3− 2
√
2 ∈

(0, 1) for 1 < t < 2. See also [17].

Corollary 1. Let (E , || · ||E) be a F -normed symmetic space on (M, τ). If A ∈ Atri as in
Theorem 1 lies in E , then R ∈ E and ||R||E ≤ ||A||E .

Theorem 2. Let τ be a faithful normal semifinite trace on a von Neumann algebra M, A ∈ Mtri

and Z, R be as in Theorem 1. If Z �= 0 and τ(R) < +∞, then there exists a number t > 0 such that
μt(A) > μt(R).

Proof. If X,Y ∈ M+, Y �= 0 and X ≥ μ∞(X) · I, then there exists a number t > 0 such that
μt(X) < μt(X + Y ) [18, Proposition 2.2]. It remains to put X = R, Y = ZZ∗ and note that μ∞(X) =
0. Theorem is proved. �

Corollary 2. In conditions of Theorem 2 we have ||R||p ≤ ||A||p for all 0 < p < ∞.

4. WHEN AN ISOMETRY OPERATOR IS UNITARY?

Let τ be a faithful normal semifinite trace on a von Neumann algebra M.
Theorem 3. If V ∈ M is an isometry (or a coisometry) and U − V ∈ M0 for some U ∈ Mu

then V ∈ Mu.
Proof. Step 1. Let V ∈ M be an isometry and let U = I. Then K = I − V ∈ M0 and P = V V ∗ ∈

Mpr. We have

K∗K −KK∗ = I − P ≥ 0, (3)

i.e., an operator K is hyponormal. Then an operator K is normal by [19, Theorem 2.2] (or by [20,
Corollary 4.3]). Now by (3) we have P = I and V ∈ Mu.

Step 2. Let an isometry V ∈ M and an operator U ∈ Mu be such that U − V ∈ M0. Since M0 is
an ideal in M, we have

(U − V )U∗ = I − V U∗ ∈ M0.

Obviously, (V U∗)∗ · V U∗ = I, i.e. an operator V U∗ is an isometry. By Step 1 we have V U∗ ∈ Mu.
Therefore, V = V U∗ · U ∈ Mu as a product of unitary operators from M.

Step 3. Let a coisometry V ∈ M and an operator U ∈ Mu be such that U − V ∈ M0. Then V ∗ is an
isometry, U∗ ∈ Mu, and U∗ − V ∗ = (U − V )∗ ∈ M0. By Step 2 we have V ∗ ∈ Mu. Hence V ∈ Mu

and Theorem 3 is proved. �

Corollary 3. Let a numberλ ∈ Cwith |λ| = 1 and an operator K ∈ M0 be such that an operator
λI +K is an isometry. Then the operator K is normal.

Corollary 4. Let S, T ∈ Msp and S − T ∈ M0. If the operator T is normal then the operator S
is also normal.

Proof. The formula VA = 2A− I (A ∈ Msp) determines a bijection between Msp and the set of all
isometries from M. Moreover, VA ∈ Mu if and only if an operator A is normal. �

Theorem 4. Let M be a factor with a faithful normal trace τ on it. If V ∈ M is an isometry
(or a coisometry) and U − V is compact relative to M for some U ∈ Mu then V ∈ Mu.

Proof. If an operator T ∈ M is hyponormal and compact relative to M then T is normal [21,
Theorem]. Therefore, we can repeat the proof of Theorem 3.

Corollary 5. Let M be a factor with a faithful normal trace τ on it. Let a number λ ∈ C with
|λ| = 1 and a compact relative to M operator K be such that an operator λI +K is an isometry.
Then the operator K is normal.

Corollary 6. Let M be a factor with a faithful normal trace τ on it. Let S, T ∈ Msp and S − T
be compact relative to M. If the operator T is normal then the operator S is also normal.
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