Kazan (Volga region) Federal University, KFU
KAZAN
FEDERAL UNIVERSITY
 
DATA AND MODELS FOR STANCE AND PREMISE DETECTION IN COVID-19 TWEETS: INSIGHTS FROM THE SOCIAL MEDIA MINING FOR HEALTH (SMM4H) 2022 SHARED TASK
Form of presentationArticles in international journals and collections
Year of publication2024
Языканглийский
  • Tutubalina Elena Viktorovna, author
  • Bibliographic description in the original language Davydova V, Yang H, Tutubalina E., Data and models for stance and premise detection in COVID-19 tweets: Insights from the Social Media Mining for Health (SMM4H) 2022 shared task//Journal of Biomedical Informatics. - 2024. - Vol.149, Is.. - Art. №104555.
    Keywords natural language processing, neural networks, deep learning
    The name of the journal Journal of Biomedical Informatics
    URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180417865&doi=10.1016%2fj.jbi.2023.104555&partnerID=40&md5=c6ddd871875e0cc8a06ffcac4ce0fbda
    Please use this ID to quote from or refer to the card https://repository.kpfu.ru/eng/?p_id=296250&p_lang=2

    Full metadata record