Kazan (Volga region) Federal University, KFU
KAZAN
FEDERAL UNIVERSITY
 
COMMUTATORS AND HYPONORMAL OPERATORS ON A HILBERT SPACE
Form of presentationArticles in international journals and collections
Year of publication2023
Языканглийский
  • Bikchentaev Ayrat Midkhatovich, author
  • Ivanshin Petr Nikolaevich, author
  • Akhmadiev Marat Gabdelbyarovich, author
  • Alkhasan Khasan , postgraduate kfu
  • Bibliographic description in the original language M. Akhmadiev. Commutators and hyponormal operators on a Hilbert space / M. Akhmadiev, H. Alhasan, A. Bikchentaev, P. Ivanshin // J. Iran. Math. Soc. 2023. Vol. 4. № 1. P 67--78.
    Annotation Let H be an innite-dimensional Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators on H. An operator A ∈ B(H) is a commutator, if A = [S, T ] = ST − T S for some S, T ∈ B(H). Let X, Y ∈ B(H) and X ≥ 0. If the operator XY is a non-commutator, then X^pY X^{1−p} is a non-commutator for every 0 < p < 1. Let A ∈ B(H) be p-hyponormal for some 0 < p ≤ 1. If |A^∗|^r is a non-commutator for some r > 0, then |A|^q is a non-commutator for every q > 0. Let H be separable and A ∈ B(H) be a non-commutator. If A is hyponormal (or cohyponormal), then A is normal. We also present results in the case of a finite-dimensional Hilbert space.
    Keywords Hilbert space, linear operator, commutator, hyponormal operator, trace
    The name of the journal Journal of the Iranian Mathematical Society
    On-line resource for training course http://dspace.kpfu.ru/xmlui/bitstream/handle/net/176401/F_JIMS_Volume_4_Issue_1_Pages_67_78.pdf?sequence=1&isAllowed=y
    URL https://dx.doi.org/10.30504/JIMS.2023.393155.1106
    Please use this ID to quote from or refer to the card https://repository.kpfu.ru/eng/?p_id=283141&p_lang=2
    Resource files 
    File name Size (MB) Format  
    F_JIMS_Volume_4_Issue_1_Pages_67_78.pdf 0,37 pdf show / download

    Full metadata record