Form of presentation | Articles in international journals and collections |
Year of publication | 2023 |
Язык | английский |
|
Bikchentaev Ayrat Midkhatovich, author
Ivanshin Petr Nikolaevich, author
|
|
Akhmadiev Marat Gabdelbyarovich, author
|
|
Alkhasan Khasan , postgraduate kfu
|
Bibliographic description in the original language |
M. Akhmadiev. Commutators and hyponormal operators on a Hilbert space / M. Akhmadiev, H. Alhasan, A. Bikchentaev, P. Ivanshin //
J. Iran. Math. Soc. 2023. Vol. 4. № 1. P 67--78. |
Annotation |
Let H be an innite-dimensional Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators on H. An operator A ∈ B(H) is a commutator, if A = [S, T ] = ST − T S for some S, T ∈ B(H). Let X, Y ∈ B(H) and X ≥ 0. If the
operator XY is a non-commutator, then X^pY X^{1−p} is a non-commutator for every 0 < p < 1. Let A ∈ B(H) be p-hyponormal for some 0 < p ≤ 1. If |A^∗|^r is a non-commutator for some r > 0, then |A|^q is a non-commutator for every q > 0. Let H be separable and A ∈ B(H) be a non-commutator. If A is hyponormal (or cohyponormal), then A is normal. We also present results in the case of a finite-dimensional Hilbert space. |
Keywords |
Hilbert space, linear operator, commutator, hyponormal operator, trace |
The name of the journal |
Journal of the Iranian Mathematical Society
|
On-line resource for training course |
http://dspace.kpfu.ru/xmlui/bitstream/handle/net/176401/F_JIMS_Volume_4_Issue_1_Pages_67_78.pdf?sequence=1&isAllowed=y
|
URL |
https://dx.doi.org/10.30504/JIMS.2023.393155.1106 |
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=283141&p_lang=2 |
Resource files | |
|
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Bikchentaev Ayrat Midkhatovich |
ru_RU |
dc.contributor.author |
Ivanshin Petr Nikolaevich |
ru_RU |
dc.contributor.author |
Akhmadiev Marat Gabdelbyarovich |
ru_RU |
dc.contributor.author |
Alkhasan Khasan |
ru_RU |
dc.date.accessioned |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2023 |
ru_RU |
dc.identifier.citation |
M. Akhmadiev. Commutators and hyponormal operators on a Hilbert space / M. Akhmadiev, H. Alhasan, A. Bikchentaev, P. Ivanshin //
J. Iran. Math. Soc. 2023. Vol. 4. № 1. P 67--78. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=283141&p_lang=2 |
ru_RU |
dc.description.abstract |
Journal of the Iranian Mathematical Society |
ru_RU |
dc.description.abstract |
Let H be an innite-dimensional Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators on H. An operator A ∈ B(H) is a commutator, if A = [S, T ] = ST − T S for some S, T ∈ B(H). Let X, Y ∈ B(H) and X ≥ 0. If the
operator XY is a non-commutator, then X^pY X^{1−p} is a non-commutator for every 0 < p < 1. Let A ∈ B(H) be p-hyponormal for some 0 < p ≤ 1. If |A^∗|^r is a non-commutator for some r > 0, then |A|^q is a non-commutator for every q > 0. Let H be separable and A ∈ B(H) be a non-commutator. If A is hyponormal (or cohyponormal), then A is normal. We also present results in the case of a finite-dimensional Hilbert space. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
linear operator |
ru_RU |
dc.subject |
commutator |
ru_RU |
dc.subject |
hyponormal operator |
ru_RU |
dc.subject |
trace |
ru_RU |
dc.title |
Commutators and hyponormal operators on a Hilbert space |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|