Form of presentation | Articles in international journals and collections |
Year of publication | 2022 |
Язык | английский |
|
Kazancev Andrey Vitalevich, author
Kinder Mikhail Ivanovich, author
|
Bibliographic description in the original language |
Kazantsev A.V., Kinder M.I. On extrema of the Mityuk radius for doubly connected domains // Lobachevskii Journal of Mathematics. - 2022. - vol. 43, No. 10. - p. 236-241. (DOI: 10.1134/S1995080222130182) |
Annotation |
We study extrema of the Mityuk radius depending on the choice of the canonical domain. Turning to the doubly connected case allows us to use the explicit form of mapping functions onto canonical domains. We obtain the results on the localization of critical points of the Mityuk radius for two types of such domains. |
Keywords |
Mityuk?s radius, critical point, extremum, conformal map, canonical
domain, doubly connected domain, circular ring |
The name of the journal |
Lobachevskii Journal of Mathematics
|
On-line resource for training course |
http://dspace.kpfu.ru/xmlui/bitstream/handle/net/173397/Kazantsev.pdf?sequence=1&isAllowed=y
|
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=272986&p_lang=2 |
Resource files | |
|
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Kazancev Andrey Vitalevich |
ru_RU |
dc.contributor.author |
Kinder Mikhail Ivanovich |
ru_RU |
dc.date.accessioned |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2022 |
ru_RU |
dc.identifier.citation |
Kazantsev A.V., Kinder M.I. On extrema of the Mityuk radius for doubly connected domains // Lobachevskii Journal of Mathematics. - 2022. - vol. 43, No. 10. - p. 236-241. (DOI: 10.1134/S1995080222130182) |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=272986&p_lang=2 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
We study extrema of the Mityuk radius depending on the choice of the canonical domain. Turning to the doubly connected case allows us to use the explicit form of mapping functions onto canonical domains. We obtain the results on the localization of critical points of the Mityuk radius for two types of such domains. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Mityuk?s radius |
ru_RU |
dc.subject |
critical point |
ru_RU |
dc.subject |
extremum |
ru_RU |
dc.subject |
conformal map |
ru_RU |
dc.subject |
canonical
domain |
ru_RU |
dc.subject |
doubly connected domain |
ru_RU |
dc.subject |
circular ring |
ru_RU |
dc.title |
On extrema of the Mityuk radius for doubly connected domains |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|