Kazan (Volga region) Federal University, KFU
KAZAN
FEDERAL UNIVERSITY
 
DIGITAL MAPPING OF INDICATORS THAT DETERMINE THE SORPTION PROPERTIES OF SOILS IN RELATION TO POLLUTANTS, ACCORDING TO REMOTE SENSING DATA OF THE EARTH USING MACHINE LEARNING
Form of presentationArticles in international journals and collections
Year of publication2022
Языканглийский
  • Giniyatullin Kamil Gashikovich, author
  • Gordeeva Karina Andreevna, author
  • Okunev Rodion Vladimirovich, author
  • Sakhabiev Ilnaz Alimovich, author
  • Smirnova Elena Vasilevna, author
  • Urazmetov Ildar Anvarovich, author
  • Bibliographic description in the original language Giniyatullin, K.G., Sahabiev, I.A., Smirnova, E.V., Urazmetov, I.A., Okunev, R.V., Gordeeva, K.A., Digital mapping of indicators that determine the sorption properties of soils in relation to pollutants, according to remote sensing data of the Earth using machine learning//Georesursy. - 2022. - Vol.24, Is.1. - P.84-92.
    Keywords Цифровое картографирование загрязненных почв, методы машинного обучения
    The name of the journal GEORESURSY
    URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128675408&doi=10.18599%2fgrs.2022.1.8&partnerID=40&md5=f2854ea5772c7a91d047fff41ac51297
    Please use this ID to quote from or refer to the card https://repository.kpfu.ru/eng/?p_id=266601&p_lang=2

    Full metadata record