Form of presentation | Articles in international journals and collections |
Year of publication | 2020 |
Язык | английский |
|
Vakhin Aleksey Vladimirovich, author
Kayukova Galina Petrovna, author
Morozov Vladimir Petrovich, author
Nasyrova Zukhra Ramisovna, author
Onishhenko Yaroslav Viktorovich, author
|
Bibliographic description in the original language |
Nasyrova, Z.R. Conversion of high-carbon Domanic Shale in sub-and supercritical water / Z.R. Nasyrova, G.P. Kayukova, Y.V. Onishchenko, V.P. Morozov, A.V. Vakhin // Energy & Fuels. – 2020. – Vol. 34. – No 2. – P. 1329–1336. |
Annotation |
This paper presents the results of the conversion of high-carbon Domanic rock from sediments of the Semiluki-Mendym horizon of the Volga-Ural petroleum Basin in sub- and supercritical waters at temperatures of 320, 374, and 420 ?C in a neutral nitrogen environment for 1 h. The initial sample is a siliceous-clay carbonate rock with an organic matter content of 10.6 wt %, the largest part of which is insoluble kerogen. The end products of all experiments are characterized by an increase in the content of saturated hydrocarbons with a noticeable decrease in the content of resins and asphaltenes. The highest yield of the extract (3.98 against 3.12 wt %) compared with the initial rock is observed in the experiment in subcritical water at 320 ?C as a result of the preferred degradation of resins and more complete extraction of asphaltenes from the rock. With an increase in temperature to supercritical water conditions at 374 ?C and pressure up to 24.6 MPa, kerogen transformation processes are observed due to the C-C, C-N, and C-O bonds destruction with the formation of low-boiling saturated hydrocarbons and high-carbon components such as carbene-carboids in the products of the experiments. The highest yield of saturated hydrocarbons occurs at the experiment of Domanic rock in supercritical water at 420 ?C and 24.4 MPa. Under these conditions, in comparison with lower temperatures, the yield of the extract from the rock decreases due to intense gas formation. In the composition of the gases formed in the experiments, there are hydrocarbons: CH4, C2H6, C3H8, and i-C4H10, indicating the destruction of C-C bonds. Dehydrogenation processes in supercritical water at 420 ?C are noted by the presence of H2 in the reaction system. Structural and phase changes in the mineral composition of Domanic rock were discovered as a result of supercritical water exposure at 374 and 420 ?C. In particular, the structure of mica was changed due to the isolation of a separate phase of montmorillonite from it. |
Keywords |
High-Carbon Domanic Shale, Supercritical Water |
The name of the journal |
Energy and Fuels
|
URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078478445&doi=10.1021%2facs.energyfuels.9b03130&partnerID=40&md5=544ea20160b82322c762f39dfb3e2f61 |
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=222765&p_lang=2 |
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Vakhin Aleksey Vladimirovich |
ru_RU |
dc.contributor.author |
Kayukova Galina Petrovna |
ru_RU |
dc.contributor.author |
Morozov Vladimir Petrovich |
ru_RU |
dc.contributor.author |
Nasyrova Zukhra Ramisovna |
ru_RU |
dc.contributor.author |
Onishhenko Yaroslav Viktorovich |
ru_RU |
dc.date.accessioned |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2020 |
ru_RU |
dc.identifier.citation |
Nasyrova, Z.R. Conversion of high-carbon Domanic Shale in sub-and supercritical water / Z.R. Nasyrova, G.P. Kayukova, Y.V. Onishchenko, V.P. Morozov, A.V. Vakhin // Energy & Fuels. – 2020. – Vol. 34. – No 2. – P. 1329–1336. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=222765&p_lang=2 |
ru_RU |
dc.description.abstract |
Energy and Fuels |
ru_RU |
dc.description.abstract |
This paper presents the results of the conversion of high-carbon Domanic rock from sediments of the Semiluki-Mendym horizon of the Volga-Ural petroleum Basin in sub- and supercritical waters at temperatures of 320, 374, and 420 ?C in a neutral nitrogen environment for 1 h. The initial sample is a siliceous-clay carbonate rock with an organic matter content of 10.6 wt %, the largest part of which is insoluble kerogen. The end products of all experiments are characterized by an increase in the content of saturated hydrocarbons with a noticeable decrease in the content of resins and asphaltenes. The highest yield of the extract (3.98 against 3.12 wt %) compared with the initial rock is observed in the experiment in subcritical water at 320 ?C as a result of the preferred degradation of resins and more complete extraction of asphaltenes from the rock. With an increase in temperature to supercritical water conditions at 374 ?C and pressure up to 24.6 MPa, kerogen transformation processes are observed due to the C-C, C-N, and C-O bonds destruction with the formation of low-boiling saturated hydrocarbons and high-carbon components such as carbene-carboids in the products of the experiments. The highest yield of saturated hydrocarbons occurs at the experiment of Domanic rock in supercritical water at 420 ?C and 24.4 MPa. Under these conditions, in comparison with lower temperatures, the yield of the extract from the rock decreases due to intense gas formation. In the composition of the gases formed in the experiments, there are hydrocarbons: CH4, C2H6, C3H8, and i-C4H10, indicating the destruction of C-C bonds. Dehydrogenation processes in supercritical water at 420 ?C are noted by the presence of H2 in the reaction system. Structural and phase changes in the mineral composition of Domanic rock were discovered as a result of supercritical water exposure at 374 and 420 ?C. In particular, the structure of mica was changed due to the isolation of a separate phase of montmorillonite from it. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
High-Carbon Domanic Shale |
ru_RU |
dc.subject |
Supercritical Water |
ru_RU |
dc.title |
Conversion of High-Carbon Domanic Shale in Sub- And Supercritical Water |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|