Form of presentation | Articles in international journals and collections |
Year of publication | 2019 |
Язык | английский |
|
Bikchentaev Ayrat Midkhatovich, author
|
Bibliographic description in the original language |
A.M. Bikchentaev, Ideal $F$-norms on $C^*$-algebras. II // Russian Mathematics, 2019, Vol. 63, No. 3. P. 78-82. |
Annotation |
We study ideal $F$-norms
$\|\cdot\|_p$, $0 < p <+\infty$ associated with a trace $\varphi$ on a $C^*$-algebra $\mathcal{A}$. If $A, B$ of $\mathcal{A}$ are such that $|A|\leq |B|$, then
$\|A\|_p \leq \|B\|_p$. We have
$\|A\|_p=\|A^*\|_p$ for all $A$ from $\mathcal{A}$ ($0 < p <+\infty$) and a seminorm $\|\cdot\|_p$ for
$1 \leq p <+\infty$. We estimate the distance from any element of a unital $\mathcal{A}$ to the scalar subalgebra in the seminorm $\|\cdot\|_1$.
We investigate geometric properties of semiorthogonal projections from
$\mathcal{A}$.
If a trace $\varphi$ is finite, then the set of all finite sums of pairwise products of projections and
semiorthogonal projections
(in any order) of $\mathcal{A}$ with coefficients from $\mathbb{R}^+ $
is not dense in $\mathcal{A}$. |
Keywords |
Hilbert space, linear operator, projection,
semiorthogonal projection, unitary operator, inequality, $C^*$-algebra, trace, ideal $F$-norm. |
The name of the journal |
Russian Mathematics
|
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=198020&p_lang=2 |
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Bikchentaev Ayrat Midkhatovich |
ru_RU |
dc.date.accessioned |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2019 |
ru_RU |
dc.identifier.citation |
A.M. Bikchentaev, Ideal $F$-norms on $C^*$-algebras. II // Russian Mathematics, 2019, Vol. 63, No. 3. P. 78-82. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=198020&p_lang=2 |
ru_RU |
dc.description.abstract |
Russian Mathematics |
ru_RU |
dc.description.abstract |
We study ideal $F$-norms
$\|\cdot\|_p$, $0 < p <+\infty$ associated with a trace $\varphi$ on a $C^*$-algebra $\mathcal{A}$. If $A, B$ of $\mathcal{A}$ are such that $|A|\leq |B|$, then
$\|A\|_p \leq \|B\|_p$. We have
$\|A\|_p=\|A^*\|_p$ for all $A$ from $\mathcal{A}$ ($0 < p <+\infty$) and a seminorm $\|\cdot\|_p$ for
$1 \leq p <+\infty$. We estimate the distance from any element of a unital $\mathcal{A}$ to the scalar subalgebra in the seminorm $\|\cdot\|_1$.
We investigate geometric properties of semiorthogonal projections from
$\mathcal{A}$.
If a trace $\varphi$ is finite, then the set of all finite sums of pairwise products of projections and
semiorthogonal projections
(in any order) of $\mathcal{A}$ with coefficients from $\mathbb{R}^+ $
is not dense in $\mathcal{A}$. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
linear operator |
ru_RU |
dc.subject |
projection |
ru_RU |
dc.subject |
semiorthogonal projection |
ru_RU |
dc.subject |
unitary operator |
ru_RU |
dc.subject |
inequality |
ru_RU |
dc.subject |
$C^*$-algebra |
ru_RU |
dc.subject |
trace |
ru_RU |
dc.subject |
ideal $F$-norm. |
ru_RU |
dc.title |
Ideal $F$-norms on $C^*$-algebras. II |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|