Form of presentation | Articles in international journals and collections |
Year of publication | 2019 |
Язык | английский |
|
Bikchentaev Ayrat Midkhatovich, author
Ivanshin Petr Nikolaevich, author
|
Bibliographic description in the original language |
Airat M. Bikchentaev, Pyotr N. Ivanshin,
On operators all of which powers have the same trace,
// Internat. J. Theor. Physics, https://doi.org/10.1007/s10773-019-04059-x |
Annotation |
We introduce the class $K_{\mathcal{A}, \phi}=\{a \in \mathcal{A}: \phi(A^k)=\phi(A)$ for all $k \in \mathbb{N}\}$ for a linear functional $\phi$ on an algebra $\mathcal{A}$ and consider the properties of this class. Also we prove the ``0--1 number lemma'':
if a set $\{z_k\}_{k=1}^{n} \subset \mathbb{C}$ is such that
$z_1+\ldots+z_n=z_1^2+\ldots+z_n^2=\cdots=z_1^{n+1}+\ldots+z_n^{n+1}$,
then $z_k \in \{0, 1\}$, for all $k=1, 2, \ldots, n$. This lemma helps us to show that $\{\phi(A): A \in K_{\mathcal{A}, \phi}\}=\{0, 1, \ldots, n\}$ and $\det (A) \in \{0, 1\}$ for
$\mathcal{A}=\mathbb{M}_n(\mathbb{C})$ and $\phi =\mathrm{tr}$, the canonical trace.
We have
$A=P+Z$ where $P$ is a projection and $Z$ is a nilpotent for any $A \in K_{\mathcal{A}, \phi}$.
Assume that for a trace class operator $A$ there exists a constant $C \in \mathbb{C}$ such that $\mathrm{tr}(A^k)=C$ for all $k \in \mathbb{N}$. Then $C \in \mathbb{N}\bigcup \{0\}$ and the spectrum $\sigma(A)$ is a subset of $\{0, 1\}$.
Finally we give the description of all the elements of the class $ K_{\mathcal{A}, \phi}$ for $\mathbb{M}_2(\mathbb{C})$. |
Keywords |
Hilbert space, normed algebra, idempotent, $C^*$-algebra, $W^*$-algebra,
linear functional, state, tracial functional, trace class operator, Vandermonde matrix,
spectrum, determinant. |
The name of the journal |
INT J THEOR PHYS
|
URL |
https://doi.org/10.1007/s10773-019-04059-x |
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=197010&p_lang=2 |
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Bikchentaev Ayrat Midkhatovich |
ru_RU |
dc.contributor.author |
Ivanshin Petr Nikolaevich |
ru_RU |
dc.date.accessioned |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2019 |
ru_RU |
dc.identifier.citation |
Airat M. Bikchentaev, Pyotr N. Ivanshin,
On operators all of which powers have the same trace,
// Internat. J. Theor. Physics, https://doi.org/10.1007/s10773-019-04059-x |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=197010&p_lang=2 |
ru_RU |
dc.description.abstract |
INT J THEOR PHYS |
ru_RU |
dc.description.abstract |
We introduce the class $K_{\mathcal{A}, \phi}=\{a \in \mathcal{A}: \phi(A^k)=\phi(A)$ for all $k \in \mathbb{N}\}$ for a linear functional $\phi$ on an algebra $\mathcal{A}$ and consider the properties of this class. Also we prove the ``0--1 number lemma'':
if a set $\{z_k\}_{k=1}^{n} \subset \mathbb{C}$ is such that
$z_1+\ldots+z_n=z_1^2+\ldots+z_n^2=\cdots=z_1^{n+1}+\ldots+z_n^{n+1}$,
then $z_k \in \{0, 1\}$, for all $k=1, 2, \ldots, n$. This lemma helps us to show that $\{\phi(A): A \in K_{\mathcal{A}, \phi}\}=\{0, 1, \ldots, n\}$ and $\det (A) \in \{0, 1\}$ for
$\mathcal{A}=\mathbb{M}_n(\mathbb{C})$ and $\phi =\mathrm{tr}$, the canonical trace.
We have
$A=P+Z$ where $P$ is a projection and $Z$ is a nilpotent for any $A \in K_{\mathcal{A}, \phi}$.
Assume that for a trace class operator $A$ there exists a constant $C \in \mathbb{C}$ such that $\mathrm{tr}(A^k)=C$ for all $k \in \mathbb{N}$. Then $C \in \mathbb{N}\bigcup \{0\}$ and the spectrum $\sigma(A)$ is a subset of $\{0, 1\}$.
Finally we give the description of all the elements of the class $ K_{\mathcal{A}, \phi}$ for $\mathbb{M}_2(\mathbb{C})$. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
normed algebra |
ru_RU |
dc.subject |
idempotent |
ru_RU |
dc.subject |
$C^*$-algebra |
ru_RU |
dc.subject |
$W^*$-algebra |
ru_RU |
dc.subject |
linear functional |
ru_RU |
dc.subject |
state |
ru_RU |
dc.subject |
tracial functional |
ru_RU |
dc.subject |
trace class operator |
ru_RU |
dc.subject |
Vandermonde matrix |
ru_RU |
dc.subject |
spectrum |
ru_RU |
dc.subject |
determinant. |
ru_RU |
dc.title |
On operators all of which powers have the same trace |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|