Form of presentation | Articles in international journals and collections |
Year of publication | 2019 |
Язык | английский |
|
Budnikov German Konstantinovich, author
Vorobev Vyacheslav Valerevich, author
Ziyatdinova Guzel Kamilevna, author
Osin Yuriy Nikolaevich, author
|
|
Antonova Tatyana Sergeevna, author
|
Bibliographic description in the original language |
Ziyatdinova, G. Selective voltammetric determination of α-lipoic acid on the electrode modified with SnO2 nanoparticles and cetyltriphenylphosphonium bromide / G. Ziyatdinova, T. Antonova, V. Vorobev, Y. Osin, H. Budnikov // Monatsh. Chem. – 2019. – V. 150. – № 3. – P. 401-410. |
Annotation |
Sensitive voltammetric method for α-lipoic acid determination based on glassy carbon electrode (GCE) modified with SnO2 nanoparticles (SnO2 NP) dispersion in cetyltriphenylphosphonium bromide (CTPPB) (SnO2 NP-CTPPB/GCE) has been developed. The comparison to other surface active compounds as dispersive agents has been performed. The electrodes surface has been characterized by scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry. Statistically significant decrease of charge transfer resistance (10.8 ? 0.4 kΩ vs. 181 ? 7 kΩ for GCE and 71 ? 3 kΩ for SnO2 NP-H2O/GCE) and higher effective surface area (13.7 ? 0.2 mm2 vs. 8.2 ? 0.3 mm2 for GCE and 12.1 ? 0.2 mm2 for SnO2 NP-H2O/GCE) has been obtained for SnO2 NP-CTPPB/GCE. α-Lipoic acid oxidation on SnO2 NP-CTPPB/GCE is a two-electron diffusion-controlled pH independent process leading to β-lipoic acid formation. Under conditions of differential pulse voltammetry in Britton–Robinson buffer pH 4.5, the linear dynamic ranges are 0.50–50 and 50–400 μmol dm−3 of α-lipoic acid with the limits of detection and quantification of 0.13 and 0.43 μmol dm−3, respectively. The method developed has been successfully applied for the pharmaceutical dosage form analysis. |
Keywords |
Voltammetry, chemically modified electrodes, metal oxide nanoparticles, surface active compounds, α-lipoic acid |
The name of the journal |
MONATSHEFTE FUR CHEMIE
|
URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061341323&doi=10.1007%2fs00706-018-2341-5&partnerID=40&md5=faac5f1d57fce4a24b3f257052e0690e |
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=196531&p_lang=2 |
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Budnikov German Konstantinovich |
ru_RU |
dc.contributor.author |
Vorobev Vyacheslav Valerevich |
ru_RU |
dc.contributor.author |
Ziyatdinova Guzel Kamilevna |
ru_RU |
dc.contributor.author |
Osin Yuriy Nikolaevich |
ru_RU |
dc.contributor.author |
Antonova Tatyana Sergeevna |
ru_RU |
dc.date.accessioned |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2019 |
ru_RU |
dc.identifier.citation |
Ziyatdinova, G. Selective voltammetric determination of α-lipoic acid on the electrode modified with SnO2 nanoparticles and cetyltriphenylphosphonium bromide / G. Ziyatdinova, T. Antonova, V. Vorobev, Y. Osin, H. Budnikov // Monatsh. Chem. – 2019. – V. 150. – № 3. – P. 401-410. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=196531&p_lang=2 |
ru_RU |
dc.description.abstract |
MONATSHEFTE FUR CHEMIE |
ru_RU |
dc.description.abstract |
Sensitive voltammetric method for α-lipoic acid determination based on glassy carbon electrode (GCE) modified with SnO2 nanoparticles (SnO2 NP) dispersion in cetyltriphenylphosphonium bromide (CTPPB) (SnO2 NP-CTPPB/GCE) has been developed. The comparison to other surface active compounds as dispersive agents has been performed. The electrodes surface has been characterized by scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry. Statistically significant decrease of charge transfer resistance (10.8 ? 0.4 kΩ vs. 181 ? 7 kΩ for GCE and 71 ? 3 kΩ for SnO2 NP-H2O/GCE) and higher effective surface area (13.7 ? 0.2 mm2 vs. 8.2 ? 0.3 mm2 for GCE and 12.1 ? 0.2 mm2 for SnO2 NP-H2O/GCE) has been obtained for SnO2 NP-CTPPB/GCE. α-Lipoic acid oxidation on SnO2 NP-CTPPB/GCE is a two-electron diffusion-controlled pH independent process leading to β-lipoic acid formation. Under conditions of differential pulse voltammetry in Britton–Robinson buffer pH 4.5, the linear dynamic ranges are 0.50–50 and 50–400 μmol dm−3 of α-lipoic acid with the limits of detection and quantification of 0.13 and 0.43 μmol dm−3, respectively. The method developed has been successfully applied for the pharmaceutical dosage form analysis. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Voltammetry |
ru_RU |
dc.subject |
chemically modified electrodes |
ru_RU |
dc.subject |
metal oxide nanoparticles |
ru_RU |
dc.subject |
surface active compounds |
ru_RU |
dc.subject |
α-lipoic acid |
ru_RU |
dc.title |
Selective voltammetric determination of α-lipoic acid on the electrode modified with SnO2 nanoparticles and cetyltriphenylphosphonium bromide |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|