Form of presentation | Articles in international journals and collections |
Year of publication | 2017 |
|
Blokhin Dmitriy Sergeevich, author
Klochkov Vladimir Vasilevich, author
|
|
Abdrakhmanov Rustam Zhamilevich, postgraduate kfu
|
Bibliographic description in the original language |
Alzheimer's disease is a fatal neurodegenerative disorder involving the abnormal accumulation and deposition of peptides
(amyloid-β, Aβ) derived from the amyloid precursor protein. Various factors that cause pathology data are revealed, but, at
the moment, there is no clear understanding of the processes of plaque formation. This is interesting and actual problem because
metals such as zinc, manganese, and others induce Aβ aggregation and fibril formation at high metal concentrations, while low
concentration metal ions selectively destabilize the Aβ oligomeric species. In present paper, we report a structural studies of the
Co2+ ion binding sites of Aβ fragments in water environment by 1D (1H) and 2D (1H-1H) NMR spectroscopy. According to the
observed changes in the NMR spectra that were determined, the cobalt binding center of the Aβ13?23 peptide is associated with
the aspartate and glutamine residues. Structural model of cobalt associated with Aβ peptide was obtained. |
Keywords |
Amyloid peptideAβ13-23, NMR, model peptide, neurodegeneration, structure, alzheimer?s disease. |
The name of the journal |
BioNanoScience
|
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=182742&p_lang=2 |
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Blokhin Dmitriy Sergeevich |
ru_RU |
dc.contributor.author |
Klochkov Vladimir Vasilevich |
ru_RU |
dc.contributor.author |
Abdrakhmanov Rustam Zhamilevich |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
Alzheimer's disease is a fatal neurodegenerative disorder involving the abnormal accumulation and deposition of peptides
(amyloid-β, Aβ) derived from the amyloid precursor protein. Various factors that cause pathology data are revealed, but, at
the moment, there is no clear understanding of the processes of plaque formation. This is interesting and actual problem because
metals such as zinc, manganese, and others induce Aβ aggregation and fibril formation at high metal concentrations, while low
concentration metal ions selectively destabilize the Aβ oligomeric species. In present paper, we report a structural studies of the
Co2+ ion binding sites of Aβ fragments in water environment by 1D (1H) and 2D (1H-1H) NMR spectroscopy. According to the
observed changes in the NMR spectra that were determined, the cobalt binding center of the Aβ13?23 peptide is associated with
the aspartate and glutamine residues. Structural model of cobalt associated with Aβ peptide was obtained. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=182742&p_lang=2 |
ru_RU |
dc.description.abstract |
BioNanoScience |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Amyloid peptideAβ13-23 |
ru_RU |
dc.subject |
NMR |
ru_RU |
dc.subject |
model peptide |
ru_RU |
dc.subject |
neurodegeneration |
ru_RU |
dc.subject |
structure |
ru_RU |
dc.subject |
alzheimer?s disease. |
ru_RU |
dc.title |
Modeling the Co2+ Binding to Amyloid Peptide Aβ13?23 in Water
Environment by NMR Spectroscopy |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|