Form of presentation | Conference proceedings in Russian journals and collections |
Year of publication | 2017 |
Язык | русский |
|
Ishmukhametov Shamil Talgatovich, author
Rubcova Ramilya Gakilevna, author
|
Bibliographic description in the original language |
Ishmukhametov S.T. Rubtsova R.G.A parallel computation of the GCD of natural
numbers// Parallelnye vychislitelnye tekhnologii – XI mezhdunarodnaya konferenciya, PaVT'2017 (3–7 aprelya 2017 g), Kazan
|
Annotation |
Сборник трудов XI международной конференции, ПаВТ'2017 (3?7 апреля 2017 г), Казань |
Keywords |
GCD, Euclidean Algorithm, parallel implementation |
The name of the journal |
Сборник трудов XI международной конференции, ПаВТ'2017 (3?7 апреля 2017 г), Казань
|
URL |
http://agora.guru.ru/display.php?conf=pavt2017 |
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=159805&p_lang=2 |
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Ishmukhametov Shamil Talgatovich |
ru_RU |
dc.contributor.author |
Rubcova Ramilya Gakilevna |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
Ishmukhametov S.T. Rubtsova R.G.A parallel computation of the GCD of natural
numbers// Параллельные вычислительные технологии – XI международная конференция, ПаВТ'2017 (3–7 апреля 2017 г), Казань
|
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=159805&p_lang=2 |
ru_RU |
dc.description.abstract |
Сборник трудов XI международной конференции, ПаВТ'2017 (3?7 апреля 2017 г), Казань |
ru_RU |
dc.description.abstract |
In this paper we analyze different algorithms for calculating
the greatest common divisor (GCD) of natural numbers with respect
to their parallelization and give improvements to the Approximating
k-ary GCD Algorithm which is a version of the k-ary GCD Algorithm.
The Approximating k-ary GCD Algorithm (briefly, AKA) was elaborated
by the first author and uses the Farey Series to find a suitable pair of
integers (x, y) ensuring an essential diminishing of set C = (Ax + By)/k
at a stage of the construction. Our algorithm can be applied in practical
computations of GCD in Mathematics and Cryptography. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
GCD |
ru_RU |
dc.subject |
Euclidean Algorithm |
ru_RU |
dc.subject |
parallel implementation |
ru_RU |
dc.title |
A parallel computation of the GCD of natural numbers |
ru_RU |
dc.type |
Conference proceedings in Russian journals and collections |
ru_RU |
|