Form of presentation | Articles in Russian journals and collections |
Year of publication | 2017 |
Язык | английский |
|
Abyzov Adel Nailevich, author
|
|
Tran Hoai Ngoc Nhan, author
Truong Cong Quynh, author
|
Bibliographic description in the original language |
Abyzov, A. N. Modules close to SSP- and SIP-modules / A. N. Abyzov, Tran Hoai Ngoc Nhan, Truong Cong Quynh // Lobachevskii Journal of Mathematics. - 2017. - Vol. 38. - № 1. - R. 16–23. |
Annotation |
In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is SIP and every right R-module has a SIP-cover. We also prove that R is a semiregular ring and J(R) = Z(RR) if only if every finitely generated projective module is a CSRickart module which is also a C2 module. |
Keywords |
SSP-moduleSIP-moduleSIP-CSCS-Rickarts |
The name of the journal |
Lobachevskii Journal of Mathematics
|
On-line resource for training course |
http://dspace.kpfu.ru/xmlui/bitstream/handle/net/109814/Modules_Close_to_SSP__and_SIP_Modules.pdf?sequence=1&isAllowed=y
|
URL |
http://link.springer.com/article/10.1134/S1995080217010024 |
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=152029&p_lang=2 |
Resource files | |
|
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Abyzov Adel Nailevich |
ru_RU |
dc.contributor.author |
Tran Hoai Ngoc Nhan |
ru_RU |
dc.contributor.author |
Truong Cong Quynh |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
Abyzov, A. N. Modules close to SSP- and SIP-modules / A. N. Abyzov, Tran Hoai Ngoc Nhan, Truong Cong Quynh // Lobachevskii Journal of Mathematics. - 2017. - Vol. 38. - № 1. - Р. 16–23. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=152029&p_lang=2 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
In this paper, we investigate some properties of SIP, SSP and CS-Rickart modules. We give equivalent conditions for SIP and SSP modules; establish connections between the class of semisimple artinian rings and the class of SIP rings. It shows that R is a semisimple artinian ring if and only if RR is SIP and every right R-module has a SIP-cover. We also prove that R is a semiregular ring and J(R) = Z(RR) if only if every finitely generated projective module is a CSRickart module which is also a C2 module. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
|
ru_RU |
dc.title |
Modules close to SSP- and SIP-modules |
ru_RU |
dc.type |
Articles in Russian journals and collections |
ru_RU |
|