В научном журнале «Учёные записки Казанского университета. Серия Физико-математические науки» вышла новая статья доцента Соловьёва С.И. с аспирантами
Самсонов А.А., Соловьёв С.И., Коростелева Д.М. Асимптотические свойства задачи о собственных колебаниях стержня с присоединённым грузом // Учёные записки Казанского университета. Серия Физико-математические науки. – 2020. – Т. 162, кн. 1. – С. 52–65. DOI: 10.26907/2541-7746.2020.1.52-65
В статье исследуется обыкновенная дифференциальная задача на собственные значения второго порядка, описывающая собственные колебания упругого стержня с присоединённым к торцу грузом. Задача имеет возрастающую последовательность положительных простых собственных значений с предельной точкой на бесконечности. Последовательности собственных значений соответствует полная ортонормированная система собственных функций. В статье изучается поведение решений в зависимости от величины массы присоединённого груза. Точнее, формулируются вспомогательные предельные дифференциальные задачи на собственные значения и доказывается сходимость собственных значений и собственных функций исходной задачи к соответствующим собственным значениям и собственным функциям предельных задач при увеличении массы груза до бесконечности. Исходная дифференциальная задача на собственные значения аппроксимируется сеточной схемой метода конечных элементов на равномерной сетке. Устанавливаются оценки погрешности приближённых собственных значений и собственных функций в зависимости от шага сетки. Исследования статьи могут быть обобщены для случаев более сложных и важных прикладных задач расчёта собственных колебаний балок, пластин и оболочек с присоединёнными грузами.