E.V. Timoshchenkoa , V.A. Yurevichb

aMogilev State A. Kuleshov University, Mogilev, 212022 Republic of Belarus

bBelarusian State University of Food and Chemical Technologies, Mogilev, 212027 Republic of Belarus

Received January 11, 2021


ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2541-7746.2021.1.21-30

For citation: Timoshchenko E.V., Yurevich V.A. On solving the problem of quasi-two-dimensional supercrystal nonlinear resonance response. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2021, vol. 163, no. 1, pp. 21–30. doi: 10.26907/2541-7746.2021.1.21-30.


Abstract

Taking into account the foundations of the generalized two-level scheme, an analytical solution to the problem of the evolution of superradiance in a quasi-two-dimensional supercrystal formed by quantum dots is obtained under homogeneous lasing field assumption in the resonant medium of the quasicrystal. The calculation was performed for the physical parameters of a semiconductor structure with quantum-well effects in the presence of resonant nonlinearity and intraband relaxation. We use the generalized two-level scheme, which allows us to take into account the self-modulating spectral broadening of the light field due to the absorption of radiation in quasi-resonant transitions in the quantum mechanical material equations, which are solved together with the field coupling equations. A relation is formulated that is analogous to the law of conservation of the polar angle of the Bloch vector for the more general case of interaction under consideration, in which, along with the phase nonlinearity of the response, the spread rate of active dipoles within the spectral line width is taken into account (i.e., the finiteness of the phase relaxation time of elementary emitters). The use of the Bloch vector formalism in this case makes it possible to obtain an analytical solution of the original modification of the nonlinear system of equations for the semiconductor supercrystals response variables and to calculate the shape of the superradiance pulses. The calculations predict the pronounced asymmetry of the pulses emitted by the semiconductor supercrystals. The calculated estimates of the time dynamics of the superradiance process, taking into account the nonlinearities typical for the resonant response, can be used in the development of methods for obtaining and profiling optical pulses in the sub-picosecond range of durations in modern compact nanophotonics devices.

Keywords: nonlinear dynamics, quantum dots supercrystals, resonance material response, dipole-dipole interaction, collective effects of radiation, Bloch vector formalism

Acknowledgments. The work was carried out as part of the assignment 1.3.03 of the State Program of Scientific Research of the Republic of Belarus “Photonics, opto- and microelectronics”.

References

  1. Krasnok A., Tymchenko M., Alu´ A. Nonlinear metasurfaces: A paradigm shift in nonlinear optics. Mater. Today, 2018, vol. 21, no. 1, pp. 8–21. doi: 10.1016/j.mattod.2017.06.007.
  2. Bekenstein R., Pikovski I., Pichler H., Shahmoon E., Yelin S.F., Lukin M.D. Quantum metasurfaces with atom arrays. Nat. Phys., 2020, vol. 16, pp. 676–681. doi: 10.1038/s41567-020-0845-5.
  3. Manzeli S., Ovchinnikov D., Pasquier D., Yazyev O.V., Kis A. 2D transition metal dichalcogenides. Nat. Rev. Mater., 2017, vol. 2, art. 17033, pp. 1–15. doi: 10.1038/natrevmats.2017.33.
  4. Boneschanscher M.P., Evers W.H., Geuchies J.J., Altantzis T., Goris B., Rabouw F., van Rossum S.A.P., van der Zant H.S.J., Siebbeles L.D.A., Van Tendeloo G., Swart I., Hilhorst J., Petukhov A.V., Bals S., Vanmaekelbergh D. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science, 2014, vol. 344, no. 6190, pp. 1377–1380. doi: 10.1126/science.1252642.
  5. Evers W.H., Goris B., Bals S., Casavola M., de Graaf J., van Roij R., Dijkstra M., Vanmaekelbergh D. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Lett., 2013, vol. 13, no. 6, pp. 2317–2323. doi: 10.1021/nl303322k.
  6. Li L., Yu Y., Ye G.J., Ge Q., Ou X., Wu H., Feng D., Chen X.H., Zhang Yu. Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, vol. 9, pp. 372–377. doi: 10.1038/nnano.2014.35.
  7. Liu W., Luo X., Bao Y., Liu Y.P., Ning G.-H., Abdelwahab I., Li L., Nai Ch.T., Hu Zh.G., Zhao D., Liu B., Quek S.Y., Loh K.P. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat. Chem., 2017, vol. 9, pp. 563–570. doi: 10.1038/nchem.2696.
  8. Scuri G., Zhou Y., High A.A., Wild D.S., Shu Chi, De Greve K.,Jauregui L.A., Taniguchi T., Watanabe K., Kim Ph., Lukin M.D., Park H. Large excitonic reflectivity of monolayer MoS e 2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett., 2018, vol. 120, no. 3, art. 037402, pp. 1–6. doi: 10.1103/PhysRevLett.120.037402.
  9. Andreev A.V., Emel'yanov V.I., Il'inskii Yu.A. Kooperativnye yavleniya v optike: Sverkhizluchenie. Bistabil'nost'. Fazovye perekhody [Cooperative Effects in Optics: Superradiation. Bistability. Phase Transitions]. Moscow, Nauka, 1988. 288 p. (In Russian)
  10. Savel'ev A.V., Karachinskii L.Ya., Novikov I.I., Gordeev N.Yu., Seisyan R.P., Zegrya G.G. Formation of superradiance in quantum dot nanoheterostructures. Fiz. Tekh. Poluprovodn., 2008, vol. 42, no. 6, pp. 730–735. (In Russian)
  11. Malikov R.F., Malyshev V.A. Optical bistability and hysteresis of a thin layer of resonant emitters: The mutual influence of inhomogeneous broadening of the absorption line and the Lorentz local field. Opt. Spectrosc., 2017, vol. 122, no. 6, pp. 955–963. doi: 10.1134/S0030400X17060121.
  12. Apanasevich P.A. Osnovy teorii vzaimodejstviya sveta s veshchestvom [Fundamentals of the Theory of Light-Matter Interaction]. Minsk, Nauka Tekh., 1977. 496 p. (In Russian)
  13. Rupasov V.I., Yudson V.I. Boundary-value problems in nonlinear optics of resonant media] Sov. J. Quantum Electron., 1982, vol. 12, no. 11, pp. 1415–1419. doi: 10.1070/QE1982v012n11ABEH006090.
  14. Zakharov S.M., Manykin E.A. Nonlinear interaction of light with a thin layer of surface resonant atoms. J. Exp. Theor. Phys., 1994, vol. 78, no. 4, pp. 566–571.
  15. Ryzhov I.V., Malikov R.F., Malyshev A.V., Malyshev V.A. Nonlinear optical response of a two-dimensional quantum-dot supercrystal: Emerging multistability, periodic and aperiodic self-oscillations, chaos, and transient chaos. Phys. Rev. A, 2019, vol. 100, no. 3, art. 033820, pp. 1–15. doi: 10.1103/PhysRevA.100.033820.
  16. Taranukhin V.D., Pogosbekyan M.Yu. Influence of optical Stark effect on the amplification of intense light pulses in resonance media. Quantum Electron., 1993, vol. 23, no. 8, pp. 713– 717. doi: 10.1070/QE1993v023n08ABEH003153.
  17. Timoshchenko E.V., Yurevich V.A., Yurevich Yu.V. Resonance reflection of light by a thin layer of a dense nonlinear medium. Tech. Phys., 2013, vol. 58, no. 2, pp. 251–254. doi: 10.1134/S1063784213020254.
  18. Petrov N.S., Zimin A.B. Laser generation in thin inverse layers. J. Appl. Spectrosc., 2010, vol. 77, no. 1, pp. 60–64. doi: 10.1007/s10812-010-9293-9.


The content is available under the license Creative Commons Attribution 4.0 License.