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Abstract

Taking into account the foundations of the generalized two-level scheme, an analytical so-
lution to the problem of the evolution of superradiance in a quasi-two-dimensional supercrystal
formed by quantum dots is obtained under homogeneous lasing field assumption in the reso-
nant medium of the quasicrystal. The calculation was performed for the physical parameters of
a semiconductor structure with quantum-well effects in the presence of resonant nonlinearity
and intraband relaxation. We use the generalized two-level scheme, which allows us to take
into account the self-modulating spectral broadening of the light field due to the absorption of
radiation in quasi-resonant transitions in the quantum mechanical material equations, which
are solved together with the field coupling equations. A relation is formulated that is analo-
gous to the law of conservation of the polar angle of the Bloch vector for the more general
case of interaction under consideration, in which, along with the phase nonlinearity of the re-
sponse, the spread rate of active dipoles within the spectral line width is taken into account
(i.e., the finiteness of the phase relaxation time of elementary emitters). The use of the Bloch
vector formalism in this case makes it possible to obtain an analytical solution of the ori-
ginal modification of the nonlinear system of equations for the semiconductor supercrystals
response variables and to calculate the shape of the superradiance pulses. The calculations
predict the pronounced asymmetry of the pulses emitted by the semiconductor supercrystals.
The calculated estimates of the time dynamics of the superradiance process, taking into ac-
count the nonlinearities typical for the resonant response, can be used in the development of
methods for obtaining and profiling optical pulses in the sub-picosecond range of durations
in modern compact nanophotonics devices.

Keywords: nonlinear dynamics, quantum dots supercrystals, resonance material response,
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Introduction

To date, artificial electromagnetic composite media with optical properties that are
absent in their constituent raw materials have been actively developed. These previ-
ously unobvious optical or, in a wider frequency range, electromagnetic properties are
due to the sub-wave size of elementary dipole emitters when they are densely packed in
a medium and the resonant nature of the scattering of external electromagnetic radia-
tion. It has been established that two-dimensional supercrystals from regularly located
dipole centers (in particular quantum dots) are one example of the objects that can
have their optical properties easily controlled by a change in the shape and chemical
composition of the forming elements, as well as in their geometry [1]. Metamaterials
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also belong to a new class of substances that do not exist in nature [2]. The internal
structure of many quasicrystals, including transition metal dichalcogenides (for example,
MoSe2 , WSe2 ) [3], supercrystals of semiconductor quantum dots [4, 5], phosphorenes [6],
and organic polymers [7], can be represented by an ordered ensemble of quantum dots
(meta-atoms, i.e., formations that exceed the average atomic size, for example, excitons)
with discrete properties of the energy spectrum. Owing to the existence of additional free
degrees in the scheme of resonant interaction with coherent radiation (for example, lat-
tice geometry and the interaction of quantum dots represented by dipoles), supercrystals
having a nanoscale thickness are characterized by unique transport and optical proper-
ties. A supercrystal is able to almost completely reflect the light field in a certain spectral
range, presenting in this way an ideal frequency-critical mirror of nanometer thickness.
In addition, reflectivity of such objects detects bistable behavior, i.e., it can be switched
by a slight change in the intensity of the external signal from the final value to the mode
of almost complete transparency [8]. The advantage of two-dimensional supercrystals is
largely expressed by the fact that the vast majority of their materials are semiconduc-
tors, the energy structure of which can be easily controlled by external action, thereby
making them highly promising for nanophotonic applications. Quantum transitions on
excitonic level schemes are characterized by gigantic oscillator forces, which leads to
a more powerful manifestation of nonlinear optical effects at moderate values of inten-
sity of coherent radiation acting in a supercrystal medium. Therefore, studying the laws
of nonlinear dynamics of the resonant response of supercrystals formed by quantum dots
seems relevant and appropriate from a practical point of view.

1. Description of the problem and basic equations

In the present work, the problem of the evolution of stimulated emission in the struc-
ture of a low-dimensional supercrystal is posed, provided that the characteristic dura-
tion of the generated pulses is much shorter than the duration of the matter relaxation
mechanisms.

Under this condition, the interaction of the medium and the light field is coherent
(oscillations of the resonance polarization of the ensemble of active centers and the wave
field generated by it are consistent), and one of the collective effects caused by this cor-
relation is represented by superradiation (SR) [9]. The emission of a superradiance pulse
by an ensemble of a large number N of inverted active centers can develop over time of
τR , which is much shorter than the characteristic radiation time T1 of an isolated atom.

The phenomenon of superradiation occurs as a result of spontaneous phase cor-
relation (phase matching or phasing) of initially independent active centers forming
a supercrystal. The appearance of phase correlation is explained by the following two
factors: the interaction of dipoles through the electromagnetic field emitted by them
and the nonlinearity of oscillatory electron motions inside active centers.

Semiconductor structures with quantum effects are used as inverse media; in the form
of planar layers, these materials are used as active surface films capable of modulating
resonant radiation. In semiconductor media, SR develops as a collective spontaneous
recombination [10]. During the SR pulse formation, the phases of individual excitons
represented by dipoles are spontaneously synchronized, as a result of which a collective
dipole with a short radiative recombination time is formed within the supercrystal.

The influence of the dipole – dipole interaction and the reaction on the field of transi-
tions close to the main one, as the population resonance changes, determines the shift of
the center of the spectral gain line and the self-modulation frequency drift of the emitted
field. Due to the relatively dense packing of active centers in the supercrystal structure
and high values of dipole moments, these features inherent in resonance interaction can
determine the self-dephasing of an ensemble of elementary emitters during SR pulse
formation.
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In the present work, the influence of these factors of nonlinear phase dynamics on
the process of superradiation in a quasi-two-dimensional supercrystal of quantum dots
is taken into account. The phase effects determine the possibility of dynamic feedback
occurrence. Therefore, as applied to such low-dimensional amplifying elements, it is
necessary to speak about the lasing with the specificity of the SR process.

Quantum-sized structures possess the properties of materials formed by active cen-
ters, the reaction of which to the electromagnetic radiation field has a pronounced dipole
character. Therefore, the two-level scheme concepts of the interaction of the matter with
a resonant light field are applicable to their calculation analysis. An optical plane wave
field in a supercrystal layer is naturally assumed to be homogeneous in the direction of
its thickness.

In contrast to the already solved analytical problems on the SR subject, the solution
along with the phase relaxation of elementary dipoles takes into account the polari-
zing effect on the matter dielectric susceptibility of the near fields of the dipoles in
the framework of the representation of the acting field, including the local Lorentz
correction. Such kind of nonlinear mechanism of interaction between the matter and
the field, which leads to a low-inertial shift of the spectral line, is typical precisely for
media with a relatively high density of active centers [11].

Generalization of the two-level scheme in the problem considered below consists
in taking into account the effect on the polarizability of absorption in quasi-resonant
transitions. This is usually expressed by the assumption of a difference (defect) in the po-
larizabilities of the dipole particles with values of α1 and α2 in the ground and excited
states [12]. When particles are redistributed over the transition levels during stimulated
emission, nonlinear resonant refraction variations are possible, which is also significant
in semiconductor excitonic media.

The problem of energy exchange of a supercrystal medium and a light field during SR
can be solved by assuming an ultrathin boundary layer of a resonant material, in essence,
for a planar film radiating from a surface. In this case, instead of wave equations, the use
of boundary electrodynamic conditions in the Maxwell equations written for the plane-
wave field acting on atoms and reflected by the layer is allowed [13].

The light field acting on the active centers and the probability of resonant polari-
zation are represented in the form of quasi-harmonic waves with a carrier frequency
close to the frequency of the fundamental transition ω0 , and relatively slow (slightly
varying over the period of the light oscillation) complex amplitudes E(t) and iρ(t) , i.e.,
E(t) = E(t) exp(iωt) , ρ(t) = iρ(t) exp (iωt) .

Together with the relations for the light fields, it is customary to consider quantum-
mechanical two-level density matrix equations for the probabilistic variables of the reso-
nance polarization and the level of population difference.

In this case, the quantum-mechanical equations of motion can be reduced to the so-
called optical Bloch equations [9] for the quasi-stationary polarization amplitude ρ(t)
and the population inversion variable n(t) , for which the relaxation dynamics is deter-
mined by the “slow” field strength and polarization amplitudes (their envelopes).

The derivation of analogues of this model of energy exchange of radiation with a reso-
nantly polarizable thin layer under the condition of homogeneously broadening spectral
line of absorption is sufficiently substantiated in the literature (see, for example, [14]).
Therefore, we will preliminarily write the system of Maxwell–Bloch equations used below
for the analysis of the quasicrystal resonance reaction to a light field in the form:

E = t0Ei − i
ωl

ε0c
P, Er = −r0Ei − i

ωl

ε0c
P, P = iµNρ,

dρ

dt
+

1
T2

ρ + i (ω0 − ω) ρ =
µ

~
nE,

dn

dt
+

n− n0

T1
= − µ

2~
(ρ∗E + ρE∗).

(1)
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In system (1), Ei and Er are the amplitudes of the externally incident and re-
flected field strength, t0 and r0 are the Fresnel transmission and reflection coefficients
of the quasicrystal surface, µ is the average dipole moment of the active centers, N is
their volume concentration in a layer of thickness l , T2 is phase (transverse or intra-
band) relaxation time characterizing the spectral width of the gain line, n0 is the initial
inversion level. In addition to the Fresnel components that are included in the boundary
condition expressions and are proportional to the amplitude of the macroscopic polar-
ization P , are called superradiant. It is assumed that the dynamics of these nonlinear
components can characterize the evolution of the coherent field interacting with such
objects as quasi-two-dimensional supercrystals [15].

In evaluating the consequences of the dipole – dipole interaction, similarly to [14],
we neglect the relatively static nonresonant contribution to the local field. Then the
amplitude of the intensity of the field acting on the active centers is represented taking

into account the local Lorentz correction in the expression: E′ = E +
P

3
ε0 , which is

further applied in the computational model (1). Using the generalized two-level scheme,
within the framework of system (1), it is relatively easy to take into account the con-
tribution to the resonant polarization of radiation from transitions adjacent to the
resonance one. The value of the polarizability defect is used as an important charac-
teristic of the polarizing effect of the field corresponding to quasi-resonant transitions
∆α = α2 − α1 (difference in polarizabilities of active atoms at the levels of the main
transition). The quantity ∆α determines the velocity of the phase drift of the field (fre-
quency “chirp”) caused by nonlinear refraction. Based on the conclusions of [12], to take
into account its consequences, instead of the polarization amplitude P (t) = iµNρ(t) ,
we can use its value refined within the framework of the generalized two-level scheme,
where the quasi-resonant term is highlighted:

P (t) = N [iµρ + 2π∆αε0 (n0 − n)E′] . (2)

The influence of transitions adjacent to the resonance one is also related the qua-
dratic Stark effect possibility [12]: in the approach of the generalized two-level scheme,
the field-induced Stark shift of resonance levels is described by one of the nonlinear
components of the phase detuning in the equation for polarization in the Bloch sys-
tem [16].

Taking into account the Lorentzian correction and representation (2) similarly to [17]
makes it possible to correspondingly modify system (1). When recording it, we neglect
the longitudinal (interband) relaxation and normalize the variable field strengths by
reducing them to quantities that have no dimension (e′ = µ2E

′/h, еi = µEi/h) :

е′ = t0еi +
1
τR

[
T2ρ− i

2π∆αε0~
µ2

(n0 − n) е′
]

(1 + iγ) , еr = е− еi,

T2
dρ

dt
− [1 + i (ω0 − ω)T2]ρ = nе′, T2

dn

dt
= −1

2
(ρ∗е′ + ρе′∗),

(3)

where τR = ε0c~/µ2ωNl is superradiance time, γ = c/3ωl is normalization factor in
the phase component arising when the local Lorentz correction is taken into account.

Superradiance arises as a result of inversion dumping when its high values are
reached in the active medium; it can develop without a light field initiating from
the outside, and at the start of the process the frequency of the acting field coin-
cides with the central frequency of the spectral gain line. In system (3), then it is
obviously necessary to set еi(t) ≡ 0 and n0 = 1 , as well as to consider the case of exact
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resonance ω = ω0 . The SR computation model is then presented in the following form:

T2
dρ

dt
=

{
κn

[1− βγ(1− n)]2 + β2(1− n)2
−1

}
ρ+i

κn[γ − β(1 + γ2)(1− n)]
[1− βγ(1− n)]2 + β2(1− n)2

ρ,

T2
dn

dt
=− κ |ρ|2

[1− βγ(1− n)]2 + β2(1− n)2
, u (t)=

κ2 |ρ|2
[1− βγ(1− n)]2 + β2(1− n)2

,

(4)

In system (4), it seems convenient to use the parameter of the layer unsaturated
gain index (it is also called the parameter of the resonant nonlinearity of absorption
(gain)); to estimate its value, the ratio κ = T2/τR is considered correct [9]. A nonli-
near refraction coefficient was also introduced: β = 2π∆αωNl/c , which determines
the rate of nonlinear frequency detuning and self-modulation change in SR dynamics.
Note that in the equation for polarization in system (4) the imaginary component is
specially highlighted, which describes the estimate of the magnitude and dynamics of
the relative phase shift of the field and polarization. Its factors are the influence of the
near-field dipoles and the presence of transitions adjacent to the ground, capable of
responding to resonance radiation. Under the assumptions used, the SR power density
u(t) is determined by the superradiant component of the resonant polarization – it is
proportional to the square of the polarization. In calculations based on (4), the SR
power density u(t) has no dimension – it is normalized by the value of (h/µT2)2 .

2. Solution of the problem for the coordinates of the Bloch vector

The dynamics of the response components of the quasicrystal medium determines
the amplification process when a certain threshold inversion is reached. It can be as-
sumed that at the initial stage of SR, the dipole ensemble representing the quasicrystal
should be maximally inverted. For example, it should be accepted, in accordance with
tradition [9], that at the initial moment n(t = 0) = 1 , while there are no correlations
in the ensemble: ρ(t = 0) = 0 . It is now easy to determine that solutions (4) for ρ and
n satisfy the following relation:

|ρ|2 + n2 = 1− 2
κ

(1− n) +
2
κ

β(1− n)2[γ − β

3
(1 + γ2)(1− n)]. (5)

In the literature devoted to the theoretical analysis of collective effects, it is consi-
dered convenient to use the Bloch vector formalism. Variables of equations similar to
the computational model (4) are then considered in the form of coordinates (compo-
nents) of the Bloch vector: X = Re ρ , Y = Im ρ , Z = n . In the absence of effects causing
a nonlinear frequency detuning (the “classical” case is for an extended medium), the re-
lation is formulated |ρ|2 + n2 = 1 , known as the law of conservation of the polar angle
of the Bloch vector [9]. Note that expression (5) represents, in essence, an analogue of
the conservation of the polar angle of the Bloch vector for a more general case of inter-
action. Along with phase nonlinearity, the formulation of (5) takes into account the rate
of dispersion of dipoles within the width of the spectral line (the finiteness of the time
of phase relaxation of dipoles). The generality of formulation (5), however, is limited
by the reasonable assumption of a inhomogeneous field in a quasi-two-dimensional qua-
sicrystal.

3. Calculation results

In the choice of parameters determining the magnitudes of the coefficients (4) for
semiconductor quantum-dimensional structures, we mainly oriented ourselves on data
known, for example, from such papers as [5, 10]. The approximate scale of the phenom-
ena corresponded to the intensity of the order (1 . . . 5) · 106 Wt/cm2 , concentration
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Fig. 1. The shape of the parts of the phase trajectories in the (|ρ|, n) plane (curves 1 correspond
to the “classical” case of an extended medium): κ = 2.4 (а), 3.0 (b), β = 0 (curves 2), 0.2
(curves 3, 4), γ = 0 (curves 3), 3.17 (curves 4)

of active centers N ∼ (2 . . . 4) · 1018 cm−3 , optical wavelength ∼ 1.3 · 10−6 m. Fig. 1
illustrates the characteristic trajectories in the phase plane of variables (|ρ|, n) , which
are calculated, following relation (2), for different types of interaction.

The law of conservation of the Bloch vector in the traditional formulation corre-
sponds to the trajectory described by curve 1 in Fig. 1, a. Naturally, the trajectory
has the shape of a circle, curve 2 has the same shape, corresponding only to taking
into account phase relaxation. In this variant, however, the population difference in
the negative part of the values has a smaller absolute value – the inversion is reset un-
der the conditions of dipole deflation caused by the influence of spontaneous processes
of interaction with the medium, it does not reach the minimum level (nmin = −1) .
To this extent, an incomplete reset of the inversion also leads to a decrease in the SR
pulse power (|ρ|2 < 1) . The influence of the phase effect associated with the dephasing
of dipoles due to the difference in polarizabilities (β 6= 0) leads to a deformation of
the trajectory, describing the conservation law (curves 3 in both fragments of Fig. 1).

Pulse fronts should develop under the conditions of a different rate of change of
inversion, so the generated “nonlinear” SR pulses become asymmetric. SR pulses should
be characterized by an even greater difference in fronts in the case of the possibility
of a dipole – dipole interaction (curves 4, Fig. 1). A relative increase in polarization,
expressed by deformation of curves 4, occurs due to the tuning of the resonance as the
inversion is reset. The nonlinear dephasing of the elementary emitters forming the su-
percrystal, which caused asymmetry, can then occur under the simultaneous action of
two self-modulating mechanisms with partial mutual compensation.

Using relation (5) enables accurate analytical calculation of the time sweep of the SR
pulse taking into account phase relaxation and phase nonlinearities. From the relation
for integral (5) follows the expression for |ρ|2 :

|ρ|2 = (1− n)
{

1 + n− 2
κ

+
2
κ

β(1− n)
[
γ − β

3
(1 + γ2)(1− n)

]}
. (6)

In view of (6), the inversion equation from (4) is solvable in the form of the relation:

2(κ− 1)
t− t0

T2
= ln (1− n) +

3κ− 4
2

×

× ln
{

1 + n− 2
κ

+
2
κ

β(1− n)
[
γ − β

3
(1 + γ2)(1− n)

]}
+

(3κ− 2 + 2βγ)√
D

Arth
β2(1 + γ2)(1− n) + 3(κ− 2βγ)√

D
,

D = (κ− 2βγ)2 + 16β2(κ− 1)(1 + γ2)/3. (7)
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Fig. 2. Temporal dependences of the square of the polarization modulus (a, b) and the nor-
malized power of the light field (с): κ = 2.4 (а), 2.2 (b), 3.0 (c), β = 0 (curve 1), 0.1 (2),
0.15 (3), 0.25 (4), γ = 3.17 (b); β = 0 (1), 0.1 (2)–(4), γ = 1.58 (2), 2.34 (3), 3.17 (4) (c);
T2 = 1 · 10−12 c

Here, we note that when neglecting the resonance phase nonlinearity, the integral (5)
makes it possible to obtain solutions for the population and polarization in the form:

n (t) = th
(

t

τ

)
+

1
κ

sh
(

t

τ

)
exp

(
− t

τ

)
,

|ρ|2 =
(κ− 1)

κ2

2

sh2

(
t

τ

)
, τ =

(
1
T2
− 1

τR

)−1

.

(8)

Formally, dependence (8) is almost similar to the known [9] calculated for extended
media and without taking into account phase relaxation. The ability to analytically take
into account phase relaxation is provided by the homogeneous field approximation.
Fig. 2, a shows, for comparison, the pulse profiles of resonant polarization with and
without phase relaxation calculated in accordance with (8). It should be noted that
the peak intensity of the light field pulses emitted under the conditions of relaxation
mechanisms should decrease. This is directly related to the already noted factor of
incomplete inversion dumping under the conditions of decay of the phased state of
the dipole ensemble during the pulse. If to consider expression (6) relating |ρ| and
n(t) , we can establish that the minimum population difference n, which is achieved
when the SR pulse is illuminated after the inversion is reset during the transition of
atoms to the ground state, increases, amounting to n′min = −1 + 2/κ .

Expression (4), taking into account the general case of interaction, allows a paramet-
ric calculation – the value n can be used for this purpose as an argument that linearly
grows within the limits determined by the integral (6).

Examples of computation of the temporal dependence of the variable |ρ(t)|2 and
the normalized intensity defined in scheme (4) using expressions (6), (7) are shown in
Fig. 2, b and c. The increase in peak values |ρ(t)|2 (Fig. 2, b) is also explained by the
tuning of the gain resonance during the pulse development. However, this increase does
not manifest itself in an increase in the peak pulse power (Fig. 2, c) due to its com-
pensation by line broadening caused by the influence of absorption in quasi-resonant
transitions (the presence of a polarizability defect α1 − α2 ). The occurrence of pulse
asymmetry is noted (curves 3, 4 in Fig. 2, b, c), which increases in the case of the rela-
tive significance of the contributions of phase nonlinearity mechanisms — the existence
of a difference in polarizabilities at the levels of the main transition (Fig. 2, b), and
an increase in the dipole – dipole interaction degree (Fig. 2, c). It is assumed that the
latter should occur due to an increase in the concentration of active centers N .

Conclusions

Some literature sources have predicted the possibility of self-excitation of generation
in thin planar inverse layers (for example, [18]). The self-excitation mode, which can
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be realized in the form of superradiance under the considered conditions of achieving
inverse population in a supercrystal formed by quantum dots, seems promising for use
in obtaining pulsed lasing in laser devices. The gain element in compact devices can
be a thin layer of a quasicrystal with a relatively high concentration of active centers
while achieving a high inversion degree. The original calculated estimates of the time
course of the SR process taking into account nonlinearities typical for the resonance
response can be used to develop methods for obtaining and profiling optical pulses in
the subpicosecond duration range in modern nanophotonic devices.
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the State Program of Scientific Research of the Republic of Belarus “Photonics, opto-
and microelectronics”.
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К решению задачи о нелинейном резонансном отклике
квазидвумерного суперкристалла
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Аннотация

В работе приведены результаты исследования нелинейного оптического отклика
двумерной решетки элементарных двухуровневых диполей, возникающий в условиях
вынужденного излучения. Подобная резонансная реакция на световое поле реализуется
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в квазидвумерных полупроводниковых суперкристаллах (ПСК), формируемых кванто-
выми точками. Такие материалы являются актуальными в исследованиях и перспектив-
ными к использованию в нанофотонике.

Исследована динамика энергообмена среды ПСК, которая характеризуется относи-
тельно высокой концентрацией активных центров, и светового поля сверхизлучения.
В приближении однородного поля решена задача теоретического описания коллективного
эффекта сверхизлучения с учётом диполь-дипольного взаимодействия активных центров,
типичного для ПСК и вызывающего нелинейное смещение резонансной частоты усиления
(поглощения).

В расчётах использованы представления обобщённой двухуровневой схемы, позволяю-
щие в квантовомеханических материальных уравнениях, решаемых совместно с уравнени-
ями связи полей, учитывать также автомодуляционное спектральное уширение светового
поля, обусловленное поглощением излучения в квазирезонансных переходах.

Определено соотношение, представляющее аналог закона сохранения полярного угла
вектора Блоха для рассматриваемого более общего случая взаимодействия, в котором на-
ряду с фазовой нелинейностью отклика учитывается скорость разброса активных диполей
в пределах ширины спектральной линии (имеется в виду, конечность времени фазовой ре-
лаксации элементарных излучателей). Использование в этом случае формализма вектора
Блоха позволяет получить аналитическое решение предложенной оригинальной моди-
фикации нелинейной системы уравнений для переменных отклика ПСК и рассчитать
форму импульсов сверхизлучения. Расчётами предсказывается выраженная асимметрия
излучаемых ПСК импульсов.

Ключевые слова: нелинейная динамика, суперкристаллы квантовых точек, резо-
нансный отклик, диполь-дипольное взаимодействие, коллективные эффекты излучения,
формализм вектора Блоха
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