P.N. Ivanshin

Kazan Federal University, Kazan, 420008 Russia

E-mail: pivanshi@yandex.ru

Received September 13, 2017

Full text PDF

Abstract

A construction method for approximate conformal mapping of the unit disk onto a Riemann surface (a map with a self-overlapping image)has been described. An example has been provided to illustrate the applicability of the method to conformal mapping of the unit disk onto a two-sheeted covering of the domain by a Riemann surface.

The function construction is based on the approximate solution of the second kind Fredholm integral equation by reducing it to the finite linear equation system, so the construction is easily programmable.

The necessary and sufficient condition for the function given on the closed curve to be the boundary value of some function analytic in the region on the Riemann surface bounded by the given curve is naturally somewhat different from that for one-connected and one-sheeted domains. We have applied this condition for a multiply-sheeted region.

Let z(ζ) be the function that maps the unit disk onto a multiply-sheeted region conformally. For the function φ(z) = ln(ζ(z)/z), we write the equations similar to that for one-connected and one-sheeted domains. Note that for our example with two-sheeted domain it is necessary to divide the right-hand side of our relations by 3 for the points on the contour sections bounding the nonunivalent region.

The solution then repeats the steps of the one-sheeted domain situation for our case.

Keywords: conformal mapping, Riemann surface, analytic function, Fredholm equation

References

  1. Conway J.B. Functions of One Complex Variable. New York, Berlin, Springer-Verlag, 1978. XIV, 322 p. doi: 10.1007/978-1-4612-6313-5.
  2. Grassmann E. Numerical experiments with a method of successive approximation for conformal mapping. Z. Angew. Math. Phys., 1979, vol. 30, no. 6, pp. 873–884. doi: 10.1007/BF01590486.
  3. Porter R.M. An accelerated osculation method and its application to numerical conformal mapping. Complex Var. Theory Appl., 2003, vol. 48, no. 7, pp. 569–582. doi: 10.1080/0278107031000110892.
  4. Driscoll T.A., Trefethen L.N. Schwarz–Christoffel Mapping. Cambridge, Cambridge Univ. Press, 2002. XVI, 132 p. doi: 10.1017/CBO9780511546808.
  5. Driscoll T.A., Vavasis S.A. Numerical conformal mapping using cross-ratios and Delaunay triangulation. SIAM J. Sci. Comput., 1998, vol. 19, no. 6, pp. 1783–1803. doi: 10.1137/S1064827596298580.
  6. Symm G.T. An integral equation method in conformal mapping. Numer. Math., 1966, vol. 9, no. 3, pp. 250–258. doi: 10.1007/BF02162088.
  7. Henrici P. Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions. New York, John Wiley & Sons, 1986. 637 p.
  8. Fornberg B. A numerical method for conformal mappings. SIAM J. Sci. Stat. Comput., 1980, vol. 1, no. 3, pp. 386–400. doi: 10.1137/0901027.
  9. Wegman R., Murid A.H.M., Nasser M.M.S. The Riemann–Hilbert problem and the generalized Neumann kernel. J. Comput. Appl. Math., 2005, vol. 182, no. 2, pp. 388–415. doi: 10.1016/j.cam.2004.12.019.
  10. Wegman R. An iterative methods for conformal mapping. J. Comput. Appl. Math., 1986, vol. 14, nos. 1–2, pp. 7–18. doi: 10.1016/0377-0427(86)90128-7.
  11. Marshall D.E., Rohde S. Convergence of a variant of the zipper algorithm for conformal mapping. SIAM J. Numer. Anal., 2007, vol. 45, no. 6, pp. 2577–2609.
  12. Shirokova E.A. On approximate conformal mapping of the unit disk on an simply connected domain. Russ. Math., 2014, vol. 58, no. 3, pp. 47–56. doi: 10.3103/S1066369X14030050.
  13. Shirokova E.A., Ivanshin P.N. Approximate conformal mappings and elasticity theory. J. Complex Anal., 2016, vol. 2016, art. 4367205, pp. 1–8. doi: 10.1155/2016/4367205.
  14. Abzalilov D.F., Shirokova E.A. The approximate conformal mapping onto simply and doubly connected domains. Complex Var. Elliptic Equations, 2017, vol. 62, no. 4, pp. 554– 565. doi: 10.1080/17476933.2016.1227978.
  15. Abzalilov D.F., Shirokova E. A. The approximate conformal mapping onto multiply connected domains. Probl. Anal. Issues Anal., 2019, vol. 8, no. 1, pp. 3–16. doi: 10.15393/j3.art.2019.5050.
  16. DeLillo Th.K., Elcrat A.R. A Fornberg-like conformal mapping method for slender regions. J. Comput. Appl. Math., 1993, vol. 46, nos. 1–2, pp. 49–64. doi: 10.1016/03770427(93)90286-K.
  17. Warschawski S.E. On conformal mapping of variable regions. Nat. Bur. Stand. Appl. Math. Ser., 1952, vol. 18, pp. 175–187.
  18. Li B.C., Syngellakis S. Numerical conformal mapping based on the generalised conjugation operator. Math. Comput., 1998, vol. 67, no. 222, pp. 619–639.
  19. Hough D.M., Papamichael N. An integral equation method for the numerical conformal mapping of interior, exterior and doubly-connected domains. Numer. Math., 1983, vol. 41, no. 3, pp. 287–307. doi: 10.1007/BF01418327.
  20. Kress R. Inverse problem and conformal mapping. Complex Var. Elliptic Equations, 2012, vol. 57, nos. 2–4, pp. 301–316. doi: 10.1080/17476933.2011.605446.
  21. Gakhov F.D. Boundary Value Problems. Pergamon, 1966. 584 p.
  22. Tricomi F.G. Integral Equations. New York, Dover Publ. Inc., 1985. 256 p.

 

For citation: Ivanshin P.N. A construction method for conformal mapping of the unit disk onto a Riemann surface. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 4, pp. 738–749. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.