A.I. Abdrakhmanova, L.U. Sultanov∗∗

Kazan Federal University, Kazan, 420008 Russia

E-mail: A061093@mail.ru, ∗∗Lenar.Sultanov@kpfu.ru

Received March 15, 2018

Full text PDF

Abstract

The paper is devoted to the construction of a computational algorithm for the investigation of hyperelastic solids with the contact interaction. In the framework of the previously developed algorithm for the investigation of large deformations of three-dimensional solids, the solutions of contact problems based on the equation of the principle of virtual work in velocity term have been considered. Contact interaction has been modeled on the basis of the “master-slave” approach. The closest point projection procedure has been used to find the contact area. A contact functional has been built on the basis of the principle of virtual work in velocity term within the penalty method. The linearization of the kinematic relations and contact functional are based on the capacity on the possible velocities of penetration. The solution of the nonlinear system of equations has been obtained using the method of step loading. The numerical implementation is based on the finite element method.

Keywords: finite deformations, contact interaction, penalty method

Acknowledgments. The study was supported by the Russian Science Foundation (project no. 16-11-10299).

References

  1. Wriggers P. Computational Contact Mechanics. John Wiley & Sons Ltd., 2002. 464 p.
  2. Wriggers P. Finite element algorithms for contact problems. Arch. Comput. Methods Eng., 1995, vol. 24, no. 4, pp. 1–49. doi: 10.1007/BF02736195.
  3. Konyukhov A., Izi R. Introduction to Computational Contact Mechanics: A Geometrical Approach. John Wiley & Sons Ltd., 2015. 302 p.
  4. Konyukhov A. Geometrically Exact Theory for Contact Interactions. Karlsruhe, KIT Sci. Publ., 2011. XIX, 516 p.
  5. Konyukhov A., Schweizerhof K. Computational Contact Mechanics – Geometrically Exact Theory for Arbitrary Shaped Bodies. Springer, Heidelberg, New York, Dordrecht, London, 2012. 443 p.
  6. Laursen T.A. Computational Contact and Impact Mechanics. Berlin, Heidelberg, Springer, 2002. XV, 454 p.
  7. Puso M.A., Laursen T.A., Solberg J. A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput. Methods Appl. Mech. Eng., 2008, vol. 197, nos. 6–8, pp. 555–566. doi: 10.1016/j.cma.2007.08.009.
  8. Yang B., Laursen T.A., Meng X. Two dimensional mortar contact methods for large deformation frictional sliding. Int. J. Numer. Methods Eng., 2005, vol. 62, no. 9, pp. 1183– 1225. doi: 10.1002/nme.1222.
  9. Burago N.G., Zhuravlev A.B., Nikitin I.S. Analysis of stress state of GTE contact system “disk-blade”. Vychisl. Mekh. Sploshnykh Sred, 2011, vol. 4, no. 2, pp. 5–16. (In Russian)
  10. Badriev I.B., Makarov M.V., Paimushin V.N. Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversally-soft core. Russ. Math., 2017, vol. 61, no. 1, pp. 69–75. doi: 10.3103/S1066369X1701008X.
  11. Badriev I.B., Paimushin V.N. Refined models of contact interaction of a thin plate with positioned on both sides deformable foundations. Lobachevskii J. Math., 2017, vol. 38, no. 5, pp. 779–793. doi: 10.1134/S1995080217050055.
  12. Al-Dojayli M., Meguid S.A. Accurate modeling of contact using cubic splines. Finite Elem. Anal. Des., 2002, vol. 38, no. 4, pp. 337–352. doi: 10.1016/S0168-874X(01)00088-9.
  13. Laursen T.A. Convected description in large deformation frictional contact problems. Int. J. Solids Struct., 1994, vol. 31, no. 5, pp. 669–681. doi: 10.1016/0020-7683(94)90145-7.
  14. Parisch H. A formulation of arbitrarily shaped surface elements for three dimensional large deformation contact with friction. Int. J. Numer. Methods Eng., 1997, vol. 40, no. 18, pp. 3359–3383. doi: 10.1002/(SICI)1097-0207(19970930)40:18<3359::AIDNME217>3.0.CO;2-5.
  15. Puso M.A. A 3D contact smoothing method using Gregory patches. Int. J. Numer. Methods Eng., 2002, vol. 54., no. 8, pp. 1161–1194. doi: 10.1002/nme.466.
  16. Yang B., Laursen T.A., Meng X. Two dimensional mortar contact methods for large deformation frictional sliding. Int. J. Numer. Methods Eng., 2005, vol. 62, no. 9, pp. 1183– 1225. doi: 10.1002/nme.1222.
  17. Izi R., Konyukhov A., Schweizerhof K. Large penetration algorithm for 3D frictionless contact problems based on a covariant form. Comput. Methods Appl. Mech. Eng., 2012, vols. 217–220, pp. 186–196. doi: 10.1016/j.cma.2012.01.012.
  18. Simo J.S., Laursen T.A. An augmented lagrangian treatment of contact problems involving friction. Comput. Struct., 1992, vol. 42, no. 1, pp. 97–116. doi: 10.1016/00457949(92)90540-G.
  19. Bonet J., Wood R.D. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge, Cambridge Univ. Press, 1997. 268 p.
  20. Oden J.T. Finite Elements of Nonlinear Continua. New York, McGraw-Hill, 1972. 442 p.
  21. Sultanov L.U. Analysis of large elastic-plastic deformations: Integration algorithm and numerical examples. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159, no. 4, pp. 509–517. (In Russian)
  22. Davydov R.L., Sultanov L.U. Numerical algorithm for investigating large elasto-plastic deformations. J. Eng. Phys. Thermophys., 2015, vol. 88, no. 5, pp. 1280–1288. doi: 10.1007/s10891-015-1310-7.
  23. Abdrakhmanova A.I., Sultanov L.U. Numerical modelling of deformation of hyperelastic incompressible solids. Mater. Phys. Mech., 2016, vol. 26, no. 1, pp. 30–32.
  24. Davydov R.L., Sultanov L.U. Numerical algorithm of solving the problem of large elasticplastic deformation by FEM. Vestn. Permsk. Nats. Issled. Politekh. Univ.: Mekh., 2013, no. 1, pp. 81–93. doi: 10.15593/perm.mech/2013.1.81-93. (In Russian)
  25. Abdrakhmanova A.I., Sultanov L.U. Numerical investigation of nonlinear deformations with contact interaction. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 3, pp. 423–434. (In Russian)
  26. Golovanov A.I., Sultanov L.U. Postbuckling elastoplastic state analysis of three-dimensional bodies taking into account finite strains. Russ. Aeronaut., 2008, vol. 51, no. 4, pp. 362–368. doi: 10.3103/S106879980804003X.
  27. Bathe K.J. Finite Element Procedures. Englewood Cliffs, NJ, Prentice-Hall, 1996. XIV, 1037 p.
  28. Zienkiewicz O.C., Taylor R.L. The Finite Element Method. Vols. 1, 2. London, New York, McGraw-Hill, 1989.

 

For citation: Abdrakhmanova A.I., Sultanov L.U. Numerical investigation of hyperelastic solids with contact interaction. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 4, pp. 644–656. (In Russian) 

 

The content is available under the license Creative Commons Attribution 4.0 License.