A.M. Bikchentaev

Kazan Federal University, Kazan, 420008 Russia

Full text PDF

For citation: Bikchentaev A.M. On an analog of the M.G. Krein theorem for measurable operators. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 2, pp. 243–249.

Для цитирования: Bikchentaev A.M. On an analog of the M.G. Krein theorem for measurable operators // Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки. – 2018. – Т. 160, кн. 2. – С. 243–249. 

Abstract

Let M be a von Neumann algebra of operators on a Hilbert space H and τ be a faithful normal semifinite trace on M. Let μt(T), > 0, be a rearrangement of a τ-measurable operator T. Let us consider a τ-measurable operator A, such that μt(A) > 0 for all > 0 and assume that μ2t(A) / μt(A) →1 as t→∞. Let a τ-compact operator S be so that the operator S is right invertible, where I is the unit of M. Then, for a τ-measurable operator B, such that A=B(I+S), we have μt(A) / μt(B) →1 as t→∞. It is an analog of the M.G. Krein theorem (for M=B(H) and τ=tr, theorem 11.4, ch. V [Gohberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators. In: Translations of Mathematical Monographs. Vol. 18. Providence, R.I., Amer. Math. Soc., 1969. 378 p.] for τ-measurable operators.

Keywords: Hilbert space, von Neumann algebra, normal trace, τ-measurable operator, distribution function, rearrangement, τ-compact operator

Acknowledgements. This work was supported by subsidies allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (projects nos. 1.1515.2017/4.6 and 1.9773.2017/8.9).

References

1. Gohberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators. In: Translations of Mathematical Monographs. Vol. 18. Providence, R.I., Amer. Math. Soc., 1969. 378 p.

2. Segal I.E. A non-commutative extension of abstract integration. Ann. Math., 1953, vol. 57, no. 3, pp. 401–457. doi: 10.2307/1969729.

3. Nelson E. Notes on non-commutative integration. J. Funct. Anal., 1974, vol. 15, no. 2, pp. 103–116. doi: 10.1016/0022-1236(74)90014-7.

4. Yeadon F.J. Non-commutative Lp-spaces. Math. Proc. Cambridge Philos. Soc., 1975, vol. 77, no. 1, pp. 91–102. doi: 10.1017/S0305004100049434.

5. Ovchinnikov V.I. Symmetric spaces of measurable operators, Dokl. Akad. Nauk SSSR, 1970, vol. 191, no. 4, pp. 769–771. (In Russian)

6. Fack T., Kosaki H. Generalized  s-numbers of  τ-measurable operators. Pac. J. Math., 1986, vol. 123, no. 2, pp. 269–300.

7. Bikchentaev A.M. On normal  τ-measurable operators affiliated with semifinite von Neumann algebras. Math. Notes, 2014, vol. 96, nos. 3–4, pp. 332–341. doi: 10.1134/S0001434614090053.

8. Matsaev V.I., Mogul'ski E.Z. On the possibility of weak perturbation of a complete operator up to a Volterra operator. Dokl. Akad. Nauk SSSR, 1972, vol. 207, no. 3, pp. 534–537. (In Russian)

9. Antonevich A.B. Linear functional equations. Operator Approach. Basel, Birkhuser, 1996. viii, 183 p.

10. Krein S.G., Petunin Ju.I., Semenov E.M. Interpolation of linear operators. In: Translations of Mathematical Monographs. Vol. 54. Providence, R.I., Amer. Math. Soc., 1982. 375 p.

Received

October 12, 2017

 

Bikchentaev Airat Midkhatovich, Doctor of Physical and Mathematical Sciences, Leading Research Fellow of Department of Theory of Functions and Approximations

Kazan Federal University

ul. Kremlevskaya, 18, Kazan, 420008 Russia

E-mail:  Airat.Bikchentaev@kpfu.ru

 

Контент доступен под лицензией Creative Commons Attribution 4.0 License.