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Abstract

Let M be a von Neumann algebra of operators on a Hilbert space H and 7 be a faithful
normal semifinite trace on M. Let p(T), ¢ > 0, be a rearrangement of a 7-measurable
operator T'. Let us consider a T-measurable operator A, such that u¢(A) > 0 for all ¢ > 0
and assume that ps(A)/pue(A) — 1 as ¢ — oo. Let a 7-compact operator S be so that
the operator I + S is right invertible, where I is the unit of M. Then, for a 7-measurable
operator B, such that A = B(I + S), we have p(A)/p(B) — 1 as t — oo. It is an analog
of the M.G. Krein theorem (for M = B(H) and 7 = tr, theorem 11.4, ch. V [Gohberg I.C.,
Krein M.G. Introduction to the theory of linear nonselfadjoint operators. In: Translations
of Mathematical Monographs. Vol. 18. Providence, R.I., Amer. Math. Soc., 1969. 378 p.] for
T-measurable operators.
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Introduction

Let M be a von Neumann algebra of operators on a Hilbert space H and 7
be a faithful normal semifinite trace on M. In theorem 3.5, we prove an analog of
the M.G. Krein theorem (for M = B(H) and 7 = tr, theorem 11.4, ch. V, [1]) for 7-
measurable operators. We also describe asymptotics of the generalized singular numbers
for a product of almost commuting 7-measurable operators.

1. Notation, definitions, and preliminaries

Let M be a von Neumann algebra of operators on a Hilbert space H. Let MP" be
the lattice of projections in M. Let I be the unit of M. Let P+ =TI—P for P € MP*.
Let M be the cone of positive elements in M.

A mapping ¢ : MT — [0,+0o0] is called a trace, if o(X +Y) = o(X) + p(Y),
©(AX) = Mp(X) for all X, Y € M*T, X >0 (moreover, 0- (+00) =0) and ¢(Z*Z) =
o(ZZ*) for all Z € M. A trace ¢ is called as follows: faithful if p(X) > 0 for all
X e Mt X # 0; finite if p(X) < +oo for all X € M™T; semifinite if ¢(X) =
sup{e(Y): Y e MT, Y < X, ¢(Y) < +oo} for every X € M*; normal if X; / X
(X0, X € MF) = o(X) = supp(X,).

An operator on H (not necessarily bounded or densely defined) is said to be affi-
liated with a von Neumann algebra M if it commutes with any unitary operator from
the commutant M’ of the algebra M. A self-adjoint operator is affiliated with M if
and only if all the projections from its spectral decomposition of unity belong to M.

Let 7 be a faithful normal semifinite trace on M. A closed operator X of everywhere
dense in ‘H domain D(X) and affiliated with M is said to be 7-measurable if there
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exists such a projection P € MP" for any € > 0 that PH C D(X) and 7(P+) < e.
The set M of all 7-measurable operators is a *-algebra under transition to the adjoint
operator, multiplication by a scalar, and strong addition and multiplication operations
defined as closure of the usual operations [2, 3].

If X is a closed densely defined linear operator affiliated with M and | X| = v X*X |
then the spectral decomposition P|X|(~) is contained in M and X belongs to M if
and only if there exists a number A € R, such that 7(PIXI((\,+0))) < +oo. Let
u:(X) denote the rearrangement of the operator X € Mv, i.e., the nonincreasing right
continuous function u(X): (0,00) — [0,00) given by the formula

pe(X) = inf{||XP|: PeMP, 1(Pr)<t}, t>0.
Then, p;(X) = inf{s > 0: A\ (X) < t}, where A\ (X) = 7(PX/((s,00))) is the distribu-

tion function of X . The set of T-compact operators My = {X € M : , ligl ue(X) =0}
—+o00
is an ideal in M [4].

Lemma 1 (see [4-6]). Let X, Y € M. Then
1) (X)) = (| X]) = pu(X™) forall t > 0;
2) psre(X +Y) < ps(X) + (V) forall s, > 0;
3) ,u's+t(XY) S NS(X),LLt(Y) fO’/‘ all S, t> 0;
9 w(XPP) = u(X)P for all p, ¢ > 0.

If M = B(H), i.e., the *-algebra of all linear bounded operators on H, and 7 = tr

is the canonical trace, then M coincides with B(H). In this case, M, is the compact
operators ideal on H and

(X)) =Y 50 (X)Xn-1,m)(t), >0,
n=1

where {s,(X)}2 is a sequence of an operator X s-numbers [1]; here, x4 is the in-

dicator function of a set A C R.

2. A generalization of the M.G. Krein theorem
for T-measurable operators

Lemma 2. The following conditions are equivalent for a monincreasing function

F:(0.50) = (0.00):

t

(i) there exists tlim ff(é; =1 for some number 0 < a #1;
bt

(ii) there exists tlim J;((t)) =1 for every number b > 0.

Proof. (i)=-(ii). We have

-t ) -

+ —1
—tim T g S
oo flat) umee f(u)
where u = at for all ¢ > 0. Hence, we assume that a, b > 1.
Case 1: 1 < b < a. Then, we have

fla='t) _ f(ot) _ flat)
ONIORNI0)

and the lemma follows from (1) and the squeeze theorem.

forall ¢t>0
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Case 2: 1 < a < b. Then, for k = min{nGN: <a} and for all £ > 0, we

an—i—l

) _fon)  fen 7 (bt> d (bﬂf) / (kl)“>

ERCHC RO

have

Y
\

and the lemma follows from relations (1) and

t—o0o b t—o0 b t—oo b
(@) ) 7 ()

combined with theorem on the limit of product of functions and the squeeze theorem.
The lemma is proved.

U
Example 1. 1) The conditions of lemma 2 hold if there exists tlim f(t) =2 >0.

2) Let us consider f(t) for all ¢ > 0. Then, there exists tlim f) =

2t
x = 0 and the conditions of lemma 2 also hold by the L’Hospital theorem for f2) =

1 ft)
1+t

M = {f} as t — oo. Induction helps us to prove the same result for n-

log(1 + 2t) 00

1
iterated function f,(t) = loglog - -log(e"1 + 1)

3) If functions f, g satisfy the conditions of lemma 2, then, for the functions f,.(t) =
t+p

f(pt), for(t) = f(t +p), Yrpt) = /f(U)dm f@?), f7 (0 < p < o0), log(l+ f),

f t

f+g, = (Gf ! is nonincreasing), and fg, the conditions of lemma 2 also hold.

1
~ log(1+1)

forall ne N and t > 0.

We prove it for fp4+, ¥r,, log(l1+ f) and f + g. The case of z = tlim f(t) >0 is

trivial. Let us put = = 0. Since

fit+p) _ fi+p) _ () _ fE+p/2)
f@t+2p) = fQRt+p)  [p(2t) T 2L +p)

we can apply the squeeze theorem.
Since pf(t+p) < ¢s,(t) < pf(t), we have for all ¢ > p the estimates

FB) _ fRt+p) _pfCt+p) _¥rp(2)  pf(2) _ f21)
fe) = -

f@®) pf(t) T drp(t) T pf(t+p)  f(t+p)

and are able to apply the squeeze theorem.

for all ¢ >0,
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We have log(1l +u) = v+ o(u) as u — 0 and f(2t) = f(t) + o(f(t)) as t — oo.
Therefore

log(1+ £(2t)) _ f(2) +o(f(2t)) _ f(2t) +o(f()) _, .
log(1+ f(t))  fO)+o(f(t))  ft)+o(f(t) L+o(f(t))
) (h(t)) and

as t — 0o. For h = f + g we have o(f(t)) + o(g(t)) =0
h(2t) (

B L f(20) - F(0) +g(20) — gt) _
h(t) f(®) +9(t)
_ o(f() +olg(t) _ o(h(t)
f(t) +9() h(t)
4) Let us consider f, as in lemma 2, numbers «, 8 > 0 and a nonincreasing function

g: (0,00) — (0,00), so that f(at) < g(t) < f(Bt) for all ¢ > 0. Then, for the function g,
the conditions of lemma 1 also hold.

Lemma 3. Let J be a left ideal in a unital algebra A and S € J be so that
the element I + S is right invertible (i.e., there exists T € A with (I +S)T =1).
Then, T =1+ X for some X € J.

Proof. Since I+ S)I'=1,wehave T=1-ST =1+ X with X =-5ST € J.
The lemma is proved.

=o(l) as t— 0.

O

Let 7 be a faithful normal semifinite trace on a von Neumann algebra M and
T(I) = 4+00.
Proposition 1 (cf. lemma 3). Let an isometry operator U € M and a selfadjoint

operator A € M be so that I + A is invertible in M. Then, the following conditions
are equivalent:

(i) U-—AeMy;

() I—A, I-UéeM,.

Proof. (i)=(ii). We have U* — A = (U — A)* € M and
—U*A+ AU = U*(U — A) — (U* — A)U € M.

Therefore, T—A2 = (U*—A)(U+A)—U*A+AU € My and I—A = (I—A2)(I+A)"! €
MQ.ThHS,I*UZI*A*(U*A)GM(). .
(ii)=(i). We have U — A= (I — A) — (I — U) € My. The proposition is proved.
0

Theorem 1. Let an operator A € M be such that p(A) >0 for all t >0 and as-
sume that there exists lim Hae(4)
I+ S is right invertible in M. Then, for an operator B € M, such that A= B(I+5S5),

there exists lim pe(4) =
t—oc py(B)

Proof. Let a number ¢ > 0 be arbitrary and let a number ¢; > 0 be such that

pey3(S) < e for t > ;. Then, by items 2) and 3) of lemma 1, we have the following
estimates for all ¢t > ¢;:

= 1. Let an operator S € Mvo be so that the operator

pe(A) = pe(B + BS) < pyy3(B) + prary3(BS) <
< pey3(B) + prey3(B)pgy3(S) < (14 €)pey3(B).  (2)
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Let an operator T € M be such that (I+S)T =1I.Then, T = I+ X with some
X € My, see lemma 3. Since

AT = B(I+ S)T = B = A(I + X),

for number t5 > 0 with p,/3(X) < e for t > 5, we obtain, analogously to estimates (2),
the relation

pe(B) < (1+¢e)ue/3(A) forall t>t,. (3)
Let a number ¢3 > 0 be such that
A
p< @A) an t > ts,
Mt/3(A)

see lemma 2. Let us put ty = max{t1,te,t3}. From (2) and (3) we obtain for all ¢ > ¢

pe(A) < (1 +&)peya(B) < (L+€)*pyso(A),

hence,
pi(A) Mt/3(B) gﬂt/g(A) 3
1< <(l4e)—F—<<(I+e)——=<(1+¢).
hes ) =Dy <y <
Therefore,
Nt/S(B) 3
1<(l4+e)—/—— < (1+¢ for all ¢ > tq.
( )Mt/3(A) ( ) 0
The theorem is proved. O
Corollary 1. Let an operator A € M be such that ue(A) > 0 for all t > 0
A —
and assume that there exists tlim MQt((A)) = 1. Let an operator S € Mgy be so that
oo it
the operator I + S s left invertible in M. Then, for an operator B € M, such that
. . ﬂt(A)
A= (14 S)B, there exists lim =1.
( ) t—oc puy(B)

Proof. We have S* € My and since (XY)"=Y*X"* for all X,Y € M, the op-
erator I 4+ S* is right invertible in M. Therefore, A* = B*(I + S*). Then, we apply
theorem 1 for the operators A*, B*,S* and recall item 1) of lemma 1. The corollary is

proved.
O

Example 2. Let operators X,Y € M be almost commuting, i.e., the commutator
[X,)Y] = XY —YX € Mg. Let us put K = [X,Y] and let the operator Y X possess
a right inverse T € M. Hence, XY =YX (I + TK). Since the operator Y X is right
invertible by item 3) of lemma 1, we have 1 = ps(I) = pu(YXT) < puy )2 (Y X) g y2(T)
for all ¢ > 0. Hence, p;(YX) > 0 for all ¢ > 0. Now, if the operator I + TK possess
a right inverse R € M (then XYR = YX(I + TK)R = YX and by item 3) of
lemma 1, we have 0 < (Y X) < g1y /o(XY )y 2(R) for all ¢ > 0; hence, p:(XY) >0

e M2 (XY o (XY
for all t > 0) and there exists tlirgo m =1, ihen there exists tlirgo (VX
by theorem 1. For any normal operators X,Y € M, we have u:(XY) = p(YX) for
all t >0 [7, corollary 3.6].
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Remark 1. In theorem 1 and corollary 1 by item 4) of lemma 1, there exists

AlP
lim (A1) =1 for every p > 0. For M = B(H) and 7 = tr, the condition “there
t—oc py(|BIP)
pae (A

exists tlg(r)lo 10 (A)

Example 3. Let (Q,v) be a measure space and M be the von Neumann algebra
of multiplicator operators M; by functions f from L (€2,v) on a space Lo(Q,v).
The algebra M containes no compact operators < the measure v has no atoms [9,
theorem 8.4]. Let M = Ly (0,00) and H = L2(0,00). Then, for any right continuous
nonincreasing function f: (0,00) — (0,00), we have u,(My) = f(t) for all ¢ > 0, see
definition 2.2, ch. II, [10]. Example 1 shows that the set of multiplicator operators My,

M
such that there exists lim M =1, is relatively rich.

(M)

=17 also appeared in [8].
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O6 auasiore teopembl M.I. Kpeiina /jiss u3MepuMbIX OIIEpaTOpPOB

A.M. Buxuenmaes

Kasanckut (I[Ipusonsicexut) dedepanvrots ynusepcumem, e. Kasanv, 420008, Poccus

AnHoTausa

IIycts anrebpa dou Heitmana omepaTtopos M aeiicTByer B ruibOepTOBOM TPOCTPaHCTBE H
U T — TOYHBIA HOPMAJIBHBIA nOyKoHeuHblit cien Ha M. Ilycrs p:(T), t > 0, — nepecTaHOBKA
T-uamepumoro omneparopa 1. Ilycrs 7-usmepumsblil oneparop A rtakoit, uro ui(A) > 0 s
Beex t > 0 umycrb ot (A)/pue(A) — 1 upu t — co. Ilycrs 7-kOMIAKTHBLI onepaTop S Takoii,
uro oneparop I + S sgaBisiercs obpaTuMbiM crupasa, riae I — emuauna anre6per M. Torma
JUIsl T-U3MepUMOoro omeparopa B rtakoro, uro A = B(I + S), umeem p(A)/pu(B) — 1 npu
t — 00. Do asmserca anagorom teopembl M.I. Kpeitna (mma M = B(H) u 7 = tr (Teopema
11.4, rn. V, [Tox6epr WN.11., Kpeita M.I. Beenenne B TeopHio JMHEHHBIX HECAMOCOIPSIZKEHHBIX
oneparopos. — M.: Hayxka, 1965. — 448 c.]), i1 T-M3MepPHUMBIX OIIEDATOPOB.

KiroueBble cisioBa: rusib0EpTOBO MPOCTPAHCTBO, ajredbpa ¢on Heiimana, HOpMaJIbLHBIM
cJies, T-M3MEPUMBIi orepaTop, MYHKINS PACIPEE/IeHNs], IEPECTAHOBKA, T-KOMIIAKTHBII Orre-
paTop
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