Yu.V. Zuev

Moscow Aviation Institute (National Research University), Moscow, 125993 Russia

E-mail: yurizuev@bk.ru

Received August 31, 2020

Full text PDF
DOI: 10.26907/2541-7746.2020.4.411-425

For citation: Zuev Yu.V. Miscalculation of two-phase turbulent jet parameters while using one-liquid mathematical model. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 4, pp. 411–425. doi: 10.26907/2541-7746.2020.4.411-425. (In Russian)

Abstract

Conditions for applying a simplified single-speed and one-temperature (one-liquid) mathematical model, which makes it possible to determine the mean mass speeds and temperatures of the heterogeneous mixture, to calculate the two-phase turbulent non-isothermal jet were defined. Numerical modeling with use of the developed multi-liquid mathematical model of the two-phase jet, in which the speed and temperature of particles differ from the speed and temperature of the gas phase, was carried out. The problem under consideration is extremely important, because two-phase jet parameters are needed to solve numerous applied tasks in various technical areas. These parameters can be accurately determined with the help of simple mathematical models. Based on the resulting calculations carried out with the developed multi-liquid mathematical model of the two-phase turbulent jet, criterial dependences for assessing the maximum error of the calculation of two-phase jet flow parameters while using the one-liquid model were obtained.

Keywords: two-phase jet, gas, particles, mathematical modeling, choice of mathematical model, accuracy of calculations

References

  1. Elghobashi S. Particle-laden turbulent flows: Direct simulation and closure models. Appl. Sci. Res., 1991, vol. 48, nos. 3–4, pp. 301–314. doi: 10.1007/BF02008202.
  2. Zuev Yu.V., Lepeshinskii I.A. Influence of interphase convective heat exchange on parameters of a two-phase turbulent jet. Mat. Model., 2013, vol. 25, no. 5, pp. 44–54. (In Russian)
  3. Zaichik L.I., Pershukov V.A. Problems of modeling gas-particle turbulent flows with combustion and phase transitions. Review. Fluid. Dyn., vol. 31, no. 5, pp. 635–646. doi: 10.1007/BF02078213.
  4. Varaksin A.Yu. Turbulentnye techeniya gaza s tverdymi chastitsami [Turbulent Flows of Gas with Solid Particles]. Moscow, Fizmatlit, 2003. 192 p. (In Russian)
  5. Varaksin A.Yu. Stolknoveniya v potokakh gaza s tverdymi chastitsami [Collisions in Gas Flows with Solid Particles]. Moscow, Fizmatlit, 2008. 312 p. (In Russian)
  6. Zuev Yu. V., Lepeshinskii I.A., Reshetnikov V.A., Istomin E.A. Selection of criteria and determination of their values for estimating the phase interaction behavior in two-phase turbulent jets. Vestn. MGTU im. N.E. Baumana. Ser. “Mashinostr.”, 2012, no. 1, pp. 42–54. (In Russian)
  7. Picano F., Sardina G., Gualtieri P., Casciola C.M. Anomalous memory effects on transport of inertial particles in turbulent jets. Phys. Fluids, 2010, vol. 22, no. 5, art. 031005PHF, pp. 1–4. doi: 10.1063/1.3432439.
  8. Zuev Yu.V. About the use of the Stokes number for mathematical modeling of two-phase jet flows. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 3, pp. 341–354. doi: 10.26907/2541-7746.2019.3.341-354. (In Russian)
  9. Gavin L.B., Naumov V.A., Shor V.V. Numerical investigation of a gas jet with heavy particles on the basis of a two-parameter model of turbulence. J. Appl. Mech. Tech. Phys., 1984, vol. 25, no. 1, pp. 56–61. doi: 10.1007/BF00916866.
  10. Mostafa A.A., Mongia H.C., McDonell V.G., Samuelsen G.S. Evolution of particle-laden jet flows – A theoretical and experimental study. AIAA J., 1989, vol. 27, no. 2, pp. 167– 183. doi: 10.2514/3.10079.
  11. Barba F.D., Picano F. Clustering and entrainment effects on the evaporation of dilute droplets in a turbulent jet. Phys. Rev. Fluids, 2018, vol. 3, no. 3, art. 034304, pp. 1–25. doi: 10.1103/PhysRevFluids.3.034304.
  12. Nigmatulin R.I. Dinamika mnogofaznykh sred [Dynamics of Multiphase Media]. Pt. 1. Moscow, Nauka, 1987. 464 p. (In Russian)
  13. Hintze I.O. Turbulentnost’, ee mekhanizm i teoriya [Turbulence, Its Mechanism and Theory]. Moscow, Fizmatgiz, 1963. 680 p. (In Russian)
  14. Sternin L.E., Schreiber A.A. Monofaznye techeniya gaza s chastitsami [Multi-Phase Gas Flows with Particles]. Moscow, Mashinostroenie, 1994. 320 p. (In Russian)
  15. Abramovich G.N., Girshovich T.A., Krasheninnikov S.Yu., Sekundov A.N., Smirnova I.P. Teoriya turbulentnykh strui [Theory of Turbulent Jets]. Abramovich G.N. (Ed.). Moscow, Nauka, 1984. 716 p. (In Russian)
  16. Krasheninnikov S.Yu. Calculation of axisymmetric swirling and non-swirling turbulent jets. Izv. Akad. Nauk SSSR. Ser. MZhG, 1972, no. 3, pp. 71–80. (In Russian)
  17. Schreiber A.A., Gavin L.B., Naumov V.A., Yatsenko V.P. Turbulentnye techeniya gazovzvesi [Turbulent Flows of a Gas Suspension]. Kiev, Naukova Dumka, 1987. 240 p. (In Russian)
  18. Samarskii A.A. Teoriya raznostnykh skhem [Theory of Difference Schemes]. Moscow, Nauka, 1989. 616 p. (In Russian)
  19. Kartushinskii A.I., Frishman F.A. On migration transport in a two-phase jet. Struinye techeniya zhidkostei i gazov: Tez. Vsesoyuz. nauch. konf. [Jet Flows of Liquids and Gases: Proc. All-Union Sci. Conf.]. Pt. 3. Novopolotsk, Novopolotskii Politekh. Inst., 1982, pp. 22–28. (In Russian)
  20. Gavin L.B., Mul’gi A.S., Shor V.V. Numerical and experimental study of a non-isothermal turbulent jet with a heavy impurity. J. Eng. Phys., 1986, vol. 50, no. 5, pp. 505–511. doi: 10.1007/BF00870703.

 

The content is available under the license Creative Commons Attribution 4.0 License.