B. Affane , A.G. Egorov∗∗

Kazan Federal University, Kazan, 420008 Russia

E-mail: boudkhil.affane@gmail.com, ∗∗aegorov0@gmail.com

Received August 4, 2020

Full text PDF
DOI: 10.26907/2541-7746.2020.4.396-410

For citation : Affane B., Egorov A.G. Asymptotic analysis of geometrically nonlinear vibrations of long plates. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 4, pp. 396–410. doi: 10.26907/2541-7746.2020.4.396-410. (In Russian)

Abstract

In this paper, we performed an asymptotic analysis for equations of the classical plate theory with the von K´arma´n strains under the assumption that the width of the plate is small compared with its length. A system of one-dimensional equations, which describes the nonlinear interaction of flexural and torsional vibrations of beams, was derived. This enables the possibility of exciting torsional vibrations by flexural vibrations. This possibility was analyzed for a model problem, when flexural vibrations occur in normal modes.

Keywords: asymptotic analysis, flexural vibrations, torsional vibrations, parametric resonance, resonance gaps, Mathieu equation.

References

  1. Sader J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys., 1998, vol. 84, no. 1, pp. 64–76. (In Russian)
  2. Kimber M., Lonergan R., Garimella S.V. Experimental study of aerodynamic damping in arrays of vibrating cantilevers. J. Fluids Struct., 2009, vol. 25, no. 8, pp. 1334–1347. doi: 10.1016/j.jfluidstructs.2009.07.003.
  3. Yeh P.D., Alexeev A. Free swimming of an elastic plate plunging at low Reynolds number. Phys. Fluids, 2014, vol. 26, no. 5, art. 053604, pp. 1–13. doi: 10.1063/1.4876231.
  4. Paimushin V.N., Firsov V.A., Gyunal I., Egorov A.G. Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1. Experimental basis. Mech. Compos. Mater., 2014, vol. 50, no. 2, pp. 127–136. doi: 10.1007/s11029-014-9400-8.
  5. Egorov A.G., Kamalutdinov A.M., Nuriev A.N., Paimushin V.N. Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens 2. Aerodynamic component of damping. Mech. Compos. Mater., 2014, vol. 50, no. 3, pp. 267–278. doi: 10.1007/s11029-014-9413-3.
  6. Egorov A.G., Kamalutdinov A.M., Nuriev A.N. Evaluation of aerodynamic forces acting on oscillating cantilever beams based on the study of the damped flexural vibration of aluminium test samples. J. Sound Vib., 2018, vol. 421, pp. 334–347. doi: 10.1016/j.jsv.2018.02.006.
  7. Egorov A.G., Kamalutdinov A.M., Nuriev A.N., Paimushin V.N. Experimental determination of damping of plate vibrations in a viscous fluid. Dokl. Phys., 2017, vol. 62, pp. 257–261. doi: 10.1134/S1028335817050068.
  8. Kamalutdinov A.M., Paimushin V.N. Refined geometrically nonlinear equations of motion for elongated rod-type plate. Russ. Math., 2016, vol. 60, no. 9, pp. 74–78. doi: 10.3103/S1066369X16090103.
  9. Egorov A.G., Affane B. Instability regions in flexural-torsional vibrations of plates. Lobachevskii J. Math., 2020, vol. 41, no. 7, pp. 1167–1174. doi: 10.1134/S1995080220070094.
  10. Berdichevskii V.L. Variatsionnye printsypy mekhaniki sploshnoi sredy [Variational Principles of Continuum Mechanics]. Moscow, Nauka, 1983. 448 p. (In Russian)
  11. Vol’mir A.S. Gibkie plastinki i obolochki [Flexible Plates and Shells]. Moscow, Gos. Izd. Tekh.-Teor. Lit., 1956. 419 p. (In Russian)
  12. Reddy J.N. An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics. Oxford, Oxford Univ. Press, 2014. 768 p. doi: 10.1093/acprof:oso/9780199641758.001.0001.
  13. Mclachlan N.W. Theory and Application of Mathieu Functions. New York, Oxford Univ. Press, 1951. 423 p.
  14. Bolotin V.V. Dinamicheskaya ustoichivost’ uprugikh sistem [Dynamic Stability of Elastic Systems]. Moscow, Gos. Izd. Tekh.-Teor. Lit., 1956. 600 p. (In Russian)
  15. Wolf G. Mathieu functions and Hill’s equation. In: NIST Handbook of Mathematical Functions. Cambridge, Cambridge Univ. Press, 2010, pp. 651–682.
  16. Dunne G.V., U¨ nsal M. WKB and resurgence in the Mathieu equation. In: Fauvet F., Manchon D., Marmi S., Sauzin D. (Eds.) Resurgence, Physics and Numbers. Pisa, Edizioni della Normale, 2017, pp. 249–298. doi: 10.1007/978-88-7642-613-16.

 

The content is available under the license Creative Commons Attribution 4.0 License.