A.O. Andreev , Yu.A. Nefedyev∗∗ , L.A. Nefediev∗∗∗ E.N. Ahmedshina∗∗∗∗ , N.Yu. Demina∗∗∗∗∗ , A.A. Zagidullin∗∗∗∗∗∗

Kazan Federal University, Kazan, 420008 Russia

E-mail: alexey-andreev93@mail.ru, ∗∗star1955@yandex.ru, ∗∗∗nefediev@yandex.ru∗∗∗∗ekanika8@gmail.com, ∗∗∗∗∗vnu 357@mail.ru, ∗∗∗∗∗∗arhtur.zagidullin@yandex.ru

Received April 15, 2020

Full text PDF

DOI: 10.26907/2541-7746.2020.2.223-236

For citation : Andreev A.O., Nefedyev Yu.A., Nefediev L.A., Ahmedshina E.N., Demina N.Yu., Zagidullin A.A. The use of multi-parameter analysis and fractal geometry for investigating the structure of the lunar surface. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 2, pp. 223–236. doi: 10.26907/2541-7746.2020.2.223-236. (In Russian)

Abstract

The problems related to the investigation of the lunar surface structure using the methods of multi-parameter analysis and fractal geometry were considered. In order to build a digital model of the lunar surface, we used the data from the Clementine, Kaguya, and LRO space missions. An electronic database of altimetry measurements was constructed. These measurements were confined to a single reference system by robust modeling. For the construction of the digital model, the altimetry satellite data were expanded into harmonic series of the spherical functions. After that, we used the developed model to determine fractal parameters and fractal similarity coefficients of the lunar surface structure and plotted diagrams of their distribution in monochromatic and color modes. The digital cartographic surface was analyzed by the method of fractal geometry aimed at assessing the fractal similarity coefficients and fractal dimensions. The digital model was transformed into a color map with regard to the color height scale. A method was developed to identify SRGB (Square, Red, Green, Blue) dimensions for the model of lunar surface. More than 150 SRGBs were analyzed, and color fractal parameters were found for them. The obtained results can be helpful for creating a global model of the lunar structure.

Keywords: space satellite measurements, digital maps of lunar surface, multi-parameter analysis, fractal geometry

References

  1. Smith D.E., Zuber M.T., Neumann G.A., Lemoine F.G. Topography of the Moon from the Clementine lidar. J. Geophys. Res.: Planets, 1997, vol. 102, no. E1, pp. 1591–1611. doi: 10.1029/96JE02940.
  2. Binder A.B. Lunar Prospector: Overview. Science, 1998, vol. 281, no. 5328, pp. 1475– 1476. doi: 10.1126/science.281.5382.1475.
  3. L¨ocher A., Ku¨sche J. Assessment of the impact of one-way laser ranging on orbit determination of the Lunar Reconnaissance Orbiter. J. Geod., 2019, vol. 93, pp. 2421–2428. doi: 10.1007/s00190-018-1200-9.
  4. Foing B.H., Racca G., Marini A., Koschny D., Frew D., Grieger B., Camino-Ramos O., Josset J.L., Grande M. SMART-1 technology, scientific results and heritage for future space missions. Planet. Space Sci., 2018, vol. 151, pp. 141–148. doi: 10.1016/j.pss.2017.09.002.
  5. Araki H., Tazawa S., Noda H., Ishihara Y., Goossens S., Sasaki S., Kawano N., Kamiya I., Otake H., Oberst J., Shum C. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science, 2009, vol. 323, no. 5916, pp. 897–900. doi: 10.1126/science.1164146.
  6. Di K., Xu B., Peng M., Yue Z., Liu Z., Wan W., Li L., Zhou J. Rock size-frequency distribution analysis at the Chang’E-3 landing site. Planet. Space Sci., 2016, vol. 120, pp. 103–112. doi: 10.1016/j.pss.2015.11.012.
  7. Wang Q., Liu J. A Change-4 mission concept and vision of future Chinese lunar exploration activities. Acta Astronaut., 2016, vol. 127, pp. 678–683. doi: 10.1016/j.actaastro.2016.06.024.
  8. Keller J.W., Petro N.E., Vondrak R.R. The Lunar Reconnaissance Orbiter Mission – Six years of science and exploration at the Moon. Icarus, 2016, vol. 273, pp. 2–24. doi: 10.1016/j.icarus.2015.11.024.
  9. Shanmugam M., Vadawale S.V., Patel A., Goyal S.K., Ladiya T., Acharya Y.B., Pal S., Nanal V. Investigation of radiation damage due to particle irradiation on Silicon Drift Detector for Chandrayaan-2 mission. J. Instrum., 2020, vol. 15, no. 1, pp. 1002–1002. doi: 10.1088/1748-0221/15/01/P01002.
  10. Sood R., Chappaz L., Melosh H.J., Howell K.C., Milbury C., Blair D.M., Zuber M.T. Detection and characterization of buried lunar craters with GRAIL data. Icarus, 2017, vol. 289, pp. 157–172. doi: 10.1016/j.icarus.2017.02.013.
  11. Hareyama M., Ishihara Y., Demura H., Hirata N., Honda C., Kamata S., Karoji Y., Kimura J., Morota T., Nagaoka H., Nakamura R., Yamamoto S., Ohtake M. Global classification of lunar reflectance spectra obtained by Kaguya (SELENE): Implication for hidden basaltic materials. Icarus, 2018, vol. 321, pp. 407–425. doi: 10.1016/j.icarus.2018.11.016.
  12. Shirenin A.M., Mazurova E.M., Bagrov A.V. Development of a high-precision selenodetic coordinate system for the physical surface of the Moon based on LED beacons on its surface. Cosmic Res., 2016, vol. 54, no. 6, pp. 452–457. doi: 10.1134/S0010952516060095.
  13. Bagrov A.V., Leonov V.A., Mitkin A.S., Nasyrov A.F., Ponomarenko A.D., Pichkhadze K.M., Sysoev V.K. Single-satellite global positioning system. Acta Astronaut., 2015, vol. 117, pp. 332–337. doi: 10.1016/j.actaastro.2015.09.003.
  14. Andreev A., Nefedyev Y., Demina N., Petrova N., Demin S., Zagidullin A. Analysis of dynamical and quasidynamical space coordinate systems. AIAA SPACE Astronaut. Forum Expo., 2017, pp. 1–6. doi: 10.2514/6.2017-5214.
  15. Rizvanov N., Nefedjev Ju. Photographic observations of Solar System bodies at the Engelhardt astronomical observatory. Astron. Astrophys., 2005, vol. 444, no. 2, pp. 625–627. doi: 10.1051/0004-6361:20042458.
  16. Valeev S., Samokhvalov K. The ARM-approach based local modelling of the gravitational field. In: Sloot P.M.A., Abramson D., Bogdanov A.V., Gorbachev Y.E., Dongarra J.J., Zomaya A.Y. (Eds.) Computational Science – ICCS 2003. Lecture Notes in Computer Science. Vol. 2658. Berlin, Heidelberg, Springer, 2003, pp. 471–480. doi: 10.1007/3-540-44862-4 50.
  17. Chrysochoou C., Rutishauser C., Rauber-Lu¨thy C., Neuhaus T., Boltshauser E., Superti-Furga A. An 11-month-old boy with psychomotor regression and auto-aggressive behavior. Eur. J. Pediatr., 2003, vol. 162, nos. 7–8, pp. 559–561. doi: 10.1007/s00431-003-1239-2.
  18. Queff´elec H., Volny´ D. On martingale approximation of adapted processes. J. Theor. Probab., 2011, vol. 25, no. 2, pp. 438–449. doi: 10.1007/s10959-011-0386-z.
  19. Valeev S.G. Coordinates of the Moon reverse side sector objects. Earth, Moon, Planets, 1986, vol. 34, no. 3, pp. 251–271. doi: 10.1007/BF00145084.
  20. Nefedyev Y.A., Valeev S.G., Mikeev R.R., Andreev A.O., Varaksina N.Y. Analysis of data of “CLEMENTINE” and “KAGUYA” missions and “ULCN” and “KSC-1162” catalogues. Adv. Space Res., 2012, vol. 50, no. 11, pp. 1564–1569. doi: 10.1016/j.asr.2012.07.012.
  21. Andreev A.O., Demina N.Y., Nefedyev Y.A., Demin S.A., Zagidullin A.A. Modeling of the physical selenocentric surface using modern satellite observations and harmonic analysis methods. J. Phys.: Conf. Ser., 2018, vol. 1038, art. 012003, pp. 1–6. doi: 10.1088/1742-6596/1038/1/012003.
  22. Nefedyev Yu.A., Andreev A.O., Petrova N.K., Demina N.Yu., Zagidullin A.A. Creation of a global selenocentric coordinate reference frame. Astron. Rep., 2018, vol. 62, no. 12, pp. 1016–1020. doi: 10.1134/S1063772918120119.
  23. Kokhanov A.A., Karachevtseva I.P., Zubarev A.E., Patraty V., Rodionova Z.F., Oberst J. Mapping of potential lunar landing areas using LRO and SELENE data. Planet. Space Sci., 2018, vol. 162, pp. 179–189. doi: 10.1016/j.pss.2017.08.002.
  24. Goossens S., Mazarico E., Ishihara Y., Archinal B., Gaddis L. Improving the geometry of Kaguya extended mission data through refined orbit determination using laser altimetry. Icarus, 2020, vol. 336, art. 113454, pp. 1–13. doi: 10.1016/j.icarus.2019.113454.
  25. Williams J.G., Konopliv A.S., Boggs D.H., Park R.S., Yuan D.-N., Lemoine F.G., Goossens S., Mazarico E., Nimmo F., Weber R.C., Asmar S.W., Melosh H.J., Neumann G.A., Phillips R.J., Smith D.E., Solomon S.C., Watkins M.M., Wieczorek M.A., Andrews-Hanna J.C., Head J.W., Kiefer W.S., Matsuyama I., McGovern P.J., Taylor G.J., Zuber M.T. Lunar interior properties from the GRAIL mission. J. Geophys. Res.: Planets, 2014, vol. 119, no. 7, pp. 1546–1578. doi: 10.1002/2013JE004559.
  26. Kim K.J., W¨ohler C., Berezhnoy A.A., Bhatt M., Grumpe A. Prospective 3 He-rich landing sites on the Moon. Planet. Space Sci., 2019, vol. 177, art. 104686, pp. 1–9. doi: 10.1016/j.pss.2019.07.001.
  27. Trigo G.F., Maass B., Kru¨ger H., Theil S. Hybrid optical navigation by crater detection for lunar pin-point landing: Trajectories from helicopter flight tests. CEAS Space J., 2018, vol. 10, pp. 567–581. doi: 10.1007/s12567-017-0188-y.
  28. Mikrin E.A., Mikhailov M.V., Orlovskii I.V., Rozhkov S.N., Krasnopol’skii I.A. Satellite navigation of lunar orbiting spacecraft and objects on the lunar surface. Gyroscopy Navig., 2019, vol. 10, no. 2, pp. 54–61. doi: 10.1134/S2075108719020068.

 

The content is available under the license Creative Commons Attribution 4.0 License.