A.A. Semenova*, S.S. Leonovb**
aSt. Petersburg State University of Architecture and Civil Engineering, St. Petersburg, 190005 Russia
bMoscow Aviation Institute (National Research University), Moscow, 125993 Russia
E-mail: *sw.semenov@gmail.com, **powerandglory@yandex.ru
Received April 8, 2019

Full text PDF

DOI: 10.26907/2541-7746.2019.2.230-249

For citation: Semenov A.A., Leonov S.S. The continuous method of solution continuation with respect to the best parameter in the calculation of shell structures. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 2, pp. 230–249. doi: 10.26907/2541-7746.2019.2.230-249. (In Russian)

Abstract

The paper considers the numerical solution process of the strength and stability problems of thin-walled shell structures taking into account the geometric nonlinearity, transverse shifts, and material orthotropy. Similar problems have great importance in mechanical engineering, aerospace industry, and building sector. Numerical simulation of these problems using the Ritz method is reduced to solving the systems of nonlinear algebraic equations regarding the increments of the desired functions. However, the numerical solution  of the systems is related to a number of difficulties associated with the presence on the solution set curve of limiting singular points or bifurcation points in which the Jacobi matrix degenerates. The paper aims to develop a computational methodology making it possible to overcome the indicated difficulties for the problems considered. For this purpose, we used the method of solution continuation with respect to the parameter developed in the works of M. Lahaye, D. Davidenko, I. Vorovich, E. Riks, E. Grigolyuk, V. Shalashilin, E. Kuznetsov, and other scientists. For the system of algebraic or transcendental equations, the solution of which is a one-parameter family of curves, the method of solution continuation is as follows. The problem original parameter is replaced with a new one, the use of which enables to overcome the singular points contained on the solution set curve. Three variants of the solution continuation method were described: Lahaye's method, Davidenko's method, and the best parameterization method. Their advantages and disadvantages were shown. The effectiveness of the best parameterization for solving the strength and stability problems of shell structures was shown using the example of the calculation of double curvature shallow shells rectangular in plan. Verification of the proposed approach was carried out. The results obtained show that the use of the technique based on the combination of the Ritz method and the method of solution continuation with respect to the best parameter allows investigation of the strength and stability of the shallow shells, overcoming the singular points of the ``load-deflection'' curve, obtaining the values of the upper and lower critical loads, and detecting the bifurcation points and investigate the supercritical behavior of the structure. These results are essential in shell structure calculation, for which there are the effects of snapping and buckling observed in various applications.

Keywords: solution continuation with respect to parameter, best parameter, Ritz method, shells, strength, buckling

Acknowledgments. The study was supported by the Russian Science Foundation (project no. 18-19-00474).

References

1. Lahaye M.E. Une metode de resolution d'une categorie d'equations transcendentes. Compter Rendus hebdomataires des seances de L'Academie des sciences, 1934, vol. 198, no. 21, pp. 1840–1842. (In French)

2. Lahaye M.E. Solution of system of transcendental equations. Acad. R. Belg. Bull. Cl. Sci., 1948, vol. 5, pp. 805–822.

3. Davidenko D.F. On a new numerical method for solving systems of nonlinear equations. Dokl. Akad. Nauk SSSR, 1953, vol. 88, no. 4, pp. 601–602. (In Russian)

4. Davidenko D.F. Approximate solution of nonlinear equation systems. Ukr. Mat. Zh., 1953, vol. 5, no. 2, pp. 196–206. (In Russian)

5. Vorovich I.I., Zipalova V.F. On the solution of nonlinear boundary value problems of the theory of elasticity by a method of transformation to an initial value Cauchy problem. J. Appl. Math. Mech., 1965, vol. 29, no. 5, pp. 1055–1063. doi: 10.1016/0021-8928(65)90126-7.

6. Riks E. The application of Newton's method to the problem of elastic stability. J. Appl. Mech., 1972, vol. 39, no. 4, pp. 1060–1065. doi: 10.1115/1.3422829.

7. Grigolyuk E.I., Shalashilin V.I. Problems of Nonlinear Deformation: The Continuation Method Applied to Nonlinear Problems in Solid Mechanics. Dordrecht, Kluwer Acad. Publ., 1991. 262 p.

8. Allgower E.L., Georg K. Introduction to Numerical Continuation Methods. Berlin, Heidelberg, Springer, 1990. 388 p.

9. Shalashilin V.I., Kuznetsov E.B. Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics. Dordrecht, Boston, London, Kluwer Acad. Publ., 2003. 228 p.

10. Kuznetsov E.B. Nekotorye prilozheniya metoda prodolzheniya resheniya po nailuchshemu parametru [Some Applications of the Solution Continuation Method with Respect to the Best Argument]. Moscow, Izd. MAI, 2013. 160 p. (In Russian)

11. Kuznetsov E.B. Parametrizatsiya kraevykh zadach i prokhozhdenie tochek bifurkatsii [Parametrization of Boundary Value Problems and Passing through Bifurcation Points]. Moscow, Izd. MAI, 2016. 160 p. (In Russian)

12. Kuznetsov E.B., Leonov S.S. Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points. Comput. Math. Math. Phys., 2017, vol. 57, no. 6, pp. 931–952. doi: 10.1134/S0965542517060094.

 13. Kuznetsov E.B., Leonov S.S. Examples of parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points. Comput. Math. Math. Phys., 2018, vol. 58, no. 6, pp. 881–897. doi: 10.1134/S0965542518060076.

14. Kalitkin N.N., Poshivaylo I.P. Solving the Cauchy problem with guaranteed accuracy for stiff systems by the arc length method. Math. Models Comput. Simul., 2015, vol. 7, no. 1, pp. 24–35. doi: 10.1134/S2070048215010044.

15. Belov A.A., Kalitkin N.N. Numerical methods of solving Cauchy problems with contrast structures. Model. Anal. Inform. Sist., 2016, vol. 23, no. 5, pp. 529–538. (In Russian)

16. Belov A.A., Kalitkin N.N. Features of calculating contrast structures in the Cauchy problem. Math. Models Comput. Simul., 2017, vol. 9, no. 3, pp. 281–291. doi: 10.1134/S2070048217030048.

17. Moskalenko L.P. Methods for investigating the stability of shallow ribbed shells based on the continuation of solution method by the best parameter. Vestn. Grazhdanskikh Inzh., 2011, no. 4, pp. 161–164. (In Russian)

18. Semenov A.A. Strength and stability of geometrically nonlinear orthotropic shell structures. Thin-Walled Struct., 2016, vol. 106, pp. 428–436. doi: 10.1016/j.tws.2016.05.018.

19. May S., Vignollet J., de Borst R. A new arc-length control method based on the rates of the internal and the dissipated energy. Eng. Comput., 2016, vol. 33, no. 1, pp. 100–115. doi: 10.1108/EC-02-2015-0044.

20. Wang X., Ma T.-B., Ren H.-L., Ning J.-G. A local pseudo arc-length method for hyperbolic conservation laws. Acta Mech. Sin., 2015, vol. 30, no. 6, pp. 956–965. doi: 10.1007/s10409-014-0091-0.

21. Grigolyuk E.I., Lopanitsyn E.A. Konechnye progiby, ustoichivost' i zakriticheskoe povedenie tonkikh pologikh obolochek [Finite Deflections, Stability, and Supercritical Behavior of Thin Shallow Shells]. Moscow, Izd. MAMI, 2004. 162 p. (In Russian)

22. Gavryushin S.S., Baryshnikova O.O., Boriskin O.F. Chislennyi analiz elementov konstruktsii mashin i priborov [Numerical Analysis of Machine and Equipment Components]. Moscow, Izd. MGTU im. N.E. Baumana, 2014. 479 p. (In Russian)

23. Petrov V.V. Metod posledovatel'nykh nagruzhenii v nelineinoi teorii plastinok i obolochek [The Method of Sequential Loading in the Nonlinear Theory of Plates and Shells]. Saratov, Izd. Sarat. Univ., 1975. 119 p. (In Russian)

24. Karpov V.V., Petrov V.V. Solutions refinement in the theory of flexible plates and shells using step methods. Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1975, no. 5, pp. 189–191. (In Russian)

25. Valishvili N.V. Metody rascheta obolochek vrashcheniya na ETsVM [Methods for Calculating the Rotation Shells on a Digital Computer]. Moscow, Mashinostroenie, 1976. 278 p. (In Russian)

26. Trushin S.I., Mikhailov A.V. Stability and bifurcations of flexible flat mesh shells. Vestn. NITS Stroitelstvo, 2010, no. 2, pp. 150–158. (In Russian)

27. Luo K., Liu C., Tian Q., Hu H. Nonlinear static and dynamic analysis of hyper-elastic thin shells via the absolute nodal coordinate formulation. Nonlinear Dyn., 2016, vol. 85, no. 2, pp. 949–971. doi: 10.1007/s11071-016-2735-z.

28. Kundu C.K., Han J.-H. Vibration and post-buckling behavior of laminated composite doubly curved shell structures. Adv. Compos. Mater., 2009, vol. 18, no. 1, pp. 21–42. doi: 10.1163/156855108X385320.

29. Alijani F., Amabili M., Karagiozis K., Bakhtiari-Nejad F. Nonlinear vibrations of functionally graded doubly curved shallow shells. J. Sound Vib., 2011, vol. 330, no. 7, pp. 1432–1454. doi: 10.1016/j.jsv.2010.10.003.

30. Mouhat O., Khamlichi A. Effect of loading pulse duration on dynamic buckling of stiffened panels. MATEC Web Conf., 2014, vol. 16, art. 07006, pp. 1–5. doi: 10.1051/matecconf/20141607006.

31. Zhao X., Liew K.M. Geometrically nonlinear analysis of functionally graded shells. Int. J. Mech. Sci., 2009, vol. 51, no. 2, pp. 131–144. doi: 10.1016/j.ijmecsci.2008.12.004.

32. Khan A.H., Patel B.P. On the nonlinear dynamics of bimodular laminated composite conical panels. Nonlinear Dyn., 2015, vol. 79, no. 2, pp. 1495–1509. doi: 10.1007/s11071-014-1756-8.

33. Badriev I.B., Makarov M.V., Paimushin V.N. Contact statement of mechanical problems of reinforced on contour sandwich plates with transversal-soft core. Russ. Math., 2017, vol. 61, no. 1, pp. 69–75. doi: 10.3103/S1066369X1701008X.

34. Badriev I.B., Makarov M.V., Paimushin V.N., Kholmogorov S.A. The axisymmetric problems of geometrically nonlinear deformation and stability of a sandwich cylindrical shell with contour reinforcing beams. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159, no. 4, pp. 395–428. (In Russian)

35. Kudryavtsev L.D. Kurs matematicheskogo analiza [A Course of Mathematical Analysis]. Vol. 2: Series. Differential and integral calculus of functions of several variables. Moscow, Drofa, 2003. 720 p. (In Russian)

36. Karpov V.V., Semenov A.A. Dimensionless parameters in the theory of reinforced shells. Vestn. Perm. Nats. Issled. Politekh. Univ. Mekh., 2015, no. 3, pp. 74–94. doi: 10.15593/perm.mech/2015.3.07. (In Russian)

37. Karpov V.V., Ignatiev O.V., Salnikov A.Yu. Nelineinye matematicheskie modeli deformirovaniya obolochek peremennoi tolshchiny i algoritmy ikh issledovaniya [Nonlinear Mathematical Models of Variable Thickness Shells Deformation and Algorithms for Their Study]. Moscow, ACB; St. Petersburg, SPbGASU, 2002. 420 p. (In Russian)

38. Wang X. Nonlinear stability analysis of thin doubly curved orthotropic shallow shells by the differential quadrature method. Comp. Methods Appl. Mech. Eng., 2007, vol. 196, pp. 2242–2251. doi: 10.1016/j.cma.2006.11.009.

39. van Campen D.H., Bouwman V.P., Zhang G.Q., Zhang J., ter Weeme B.J.W. Semianalytical stability analysis of doubly-curved orthotropic shallow panels – considering the effects of boundary conditions. Int. J. Non-Linear Mech., 2002, vol. 37, pp. 659–667. doi: 10.1016/S0020-7462(01)00090-7.


The content is available under the license Creative Commons Attribution 4.0 License.