A.A. Aganin , T.S. Guseva∗∗ , L.A. Kosolapova∗∗∗ , N.A. Khimatullina∗∗∗∗

Institute of Mechanics and Engineering, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111 Russia

E-mail:aganin@kfti.knc.ru,∗∗ts.guseva@mail.ru ,∗∗∗kosolapova@kfti.knc.ru,

∗∗∗∗nailyahism@mail.ru

Received July 19, 2018


Full text PDF

DOI: 10.26907/2541-7746.2019.2.165-180

For citation: Aganin A.A., Guseva T.S., Kosolapova L.A., Khimatullina N.A. Dependence of cavitation bubble impact onto a body on liquid pressure. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 2, pp. 165–180. doi: 10.26907/2541-7746.2019.2.165-180. (In Russian)

Abstract

The effect produced by liquid pressure during the impact of a cavitation bubble on the surface of a body was numerically studied. The liquid under study was water; the material of the body was copper-nickel alloy; the bubble was initially spherical (radius 1 mm), touched the body, and filled with vapor in the saturation state.  The liquid pressure pL   varied from 1 to 7 bar. The impact on the body resulted from the action of a cumulative jet arising on the surface of the bubble during its collapse. The main attention was paid to the short-term initial phase of the impact when the maximum pressure on the wall was of the order of the wa- ter hammer pressure pwh , corresponding to a rigid wall.  It was shown that the cumulative jet velocity and radius increase from 115 to 317 m/c and from 38 to 43 ? m , respectively, with increasing pL . Throughout the pL range considered, the initial stage of the cumulative jet impact developed similarly to the known case of the spherical drop impact. The body surface pressure first reached the water hammer pressure level. Then the pressure on the body surface at the center of the impact domain decreased monotonically, whereas at the periphery it initially increased to about 2.5 pwh and after that decreased. Initially, the deformations in the body in the impact center vicinity were elastic at pL = 1 bar and plastic at p= 4 and 7 bar. Then they became plastic at pL = 1 bar. With increasing pL , the plastic zone significantly increased, its geometry greatly changed. The jet impact resulted in a circular micropit appearing on the body surface. With increasing pL , it became more pronounced.

Keywords: cavitation, bubble collapse near body, cumulative jet, liquid impact onto body, elastic-plastic body dynamics

Acknowledgments. The study was supported by the Russian Foundation for Basic Re- search (project no. 16-01-00433).

References

1. Kornfeld M., Suvorov L. On the destructive action of cavitation. J. Appl. Phys., 1944, vol. 15, no. 6, pp. 495–506. doi: 10.1063/1.1707461.

2. Preece C.M. Cavitation erosion. In: Preece C.M. (Ed.) Erosion. New York, Acad. Press, 1979, pp. 208–301.

3. Arndt R.E.A. Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid Mech., 1981, vol. 13, pp. 273–328. doi: 10.1146/annurev.fl.13.010181.001421.

4. Brennen C.E. Hydrodynamics of Pumps. Oxford Univ. Press, 1994. 293 p.

5. Terwisga T.J.C., Wijngaarden E., Bosschers J., Kuiper G. Cavitation research on ship propellers a review of achievements and challenges. Int. Shipbuild. Prog., 2007, vol. 54, nos. 2–3, pp. 165–187.

6. Ohl C.-D., Arora M., Ikink R., Jong N., Versluis M., Delius M., Lohse D. Sonoporation from jetting cavitation bubbles. Biophys. J., 2006, vol. 91, pp. 4285–4295. doi: 10.1529/biophysj.105.075366.

7. Skolarikos A., Alivizatos G., de la Rosette J. Extracorporeal shock wave lithotripsy 25 years later: Complications and their prevention. Eur. Urol., 2006, vol. 50, no. 5, pp. 981–990. doi 10.1016/j.eururo.2006.01.045.

8. Guoa Sh., Khoo B.Ch., Teob S.L. M., Lee H.P. The effect of cavitation bubbles on the removal of juvenile barnacles. Colloids Surf., B, 2013, vol. 109, pp. 219–227. doi: 10.1016/j.colsurfb.2013.03.046.

9. Brennen C.E. Cavitation in medicine. Interface Focus, 2015, vol. 5, no. 5, art. 20150022, pp. 1–12. doi: 10.1098/rsfs.2015.0022.

10. Mason T.J. Ultrasonic cleaning: An historical perspective. Ultrason. Sonochem., 2016, vol. 29, pp. 519–523. doi: 10.1016/j.ultsonch.2015.05.004.

11. Bourne N.K. On impacting liquid jets and drops onto polymethylmethacrylate targets. Proc. R. Soc. A., 2005, vol. 461, pp. 1129–1145. doi: 10.1098/rspa.2004.1440.

12. Shaw S.J., Jin Y.H., Schiffers W.P., Emmony D.C. The interaction of a single laser-generated cavity in water with a solid surface. J. Acoust. Soc. Am., 1996, vol. 99, no. 5, pp. 2813–2824.

13. Isselin J.-C., Alloncle A.-P., and Autric M. On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena. J. Appl. Phys., 1998, vol. 84, no. 10, pp. 5766–5771.

14. Aganin A.A., Guseva T.S., Kosolapova L.A., Malakhov V.G., Khismatullina N.A. Modeling of cavitation bubble impact on a body. Izv. UNTs Ross. Akad. Nauk, 2014, no. 2, pp. 53–61. (In Russian)

15. Aganin A.A., Guseva T.S., Kosolapova L.A., Khismatullina N.A. The calculation of weakly nonspherical cavitation bubble impact on a solid. IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 158, no. 1, art. 012003, pp. 1–6, doi: 10.1088/1757-899X/158/1/012003.

16. Aganin A.A., Kosolapova L.A., Malakhov V.G. Numerical simulation of the evolution of a gas bubble in a liquid near a wall. Math. Models Comput. Simul., 2018, vol. 10, no. 1, pp. 89–98. doi: 10.1134/S2070048218010027.

17. Aganin A.A., Guseva T.S. Numerical simulation of impact of a jet on a wall. Math. Models Comput. Simul., 2017, vol. 9, no. 5, pp. 623–635. doi: 10.1134/S2070048217050027.

18. Aganin A.A., Khismatullina N.A. Computation of two-dimensional disturbances in an elastic body. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159. no. 2, pp. 143–160. (In Russian)

19. Plesset M.S., Chapman R.B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech., 1971, vol. 47, pt. 2, pp. 283–290.

20. Philipp A., Lauterborn W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech., 1998, vol. 361, pp. 75–116.

21. Voinov O.V., Voinov V.V. On the scheme of a collapsing cavitation bubble near the wall and the formation of a cumulative jet. Sov. Phys. Dokl., 1976, vol. 21, no. 1, pp. 133–136.

22. Blake J.R., Taib B.B., Doherty G. Transient cavities near boundaries. J. Fluid Mech., 1986, vol. 170, pp. 479–497.

23. Aganin A.A., Ilgamov M.A., Kosolapova L.A., Malakhov V.G. Dynamics of a cavitation bubble near a solid wall. Thermophys. Aeromech., 2016, vol. 23, no. 2, pp. 211–220.

24. Aganin A.A., Guseva T.S., Kosolapova L.A., Malakhov V.G. Shock waves in liquid under the pulsed action of a cavitation bubble on a rigid wall. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2015, vol. 157, no. 2, pp. 5–19. (In Russian)

25. Aganin A.A., Guseva T.S., Kosolapova L.A. Impact of a cavitation bubble on a wall. Russ. Aeronaut., 2017, vol. 60, no. 3, pp. 391–397. doi: 10.3103/S1068799817030102.

26. Aganin A.A., Guseva T.S. Numerical simulation of the dynamics of non-uniform compressible media based on the CIP-CUP method on dynamically adaptive soroban grids. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2014, vol. 156, no. 2, pp. 55–71. (In Russian)

27. Yabe T., Xiao F., Utsumi T. The constrained interpolation profile method for multiphase analysis. J. Comput. Phys., 2001, vol. 169, no. 2, pp. 556–593. doi: 10.1006/jcph.2000.6625.

28. Yabe T., Wang P.Y. Unified numerical procedure for compressible and incompressible fluid. J. Phys. Soc. Jpn, 1991, vol. 60, no. 7, pp. 2105–2108.

29. Takizawa K., Yabe T., Tsugawa Y., Tezduyar T.E., Mizoe H. Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids. Comput. Mech., 2007, vol. 40, no. 1, pp. 167–183. doi: 10.1007/s00466-006-0093-2.

30. Aganin A.A., Khismatullina N.A. Schemes of the second order accuracy for computing the dynamics of disturbances in an elastic body. Tr. Inst. im. R.R. Mavlyutova Ufim. Nauchn. Tsentra Ross. Akad. Nauk, 2017, vol. 12, no. 1, pp. 44–50. (In Russian)

31. Il'gamov M.A., Gilmanov A.N. Neotrazhayushchie usloviya na granitsakh raschetnoi oblasti [Non-Reflecting Conditions on the Boundary of Computational Domain]. Moscow, FIZMATLIT, 2003. 240 p. (In Russian)

32. Wilkins M.L. Calculation of elastic-plastic flow. In: Methods in Computational Physics. New York, Acad. Press, 1964, pp. 211–263.

33. Rein M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res., 1993, vol. 12, no. 2, pp. 61–93. doi: 10.1016/0169-5983(93)90106-K.

34. Lesser M.B. Thirty years of liquid impact research: A tutorial review. Wear, 1995, vols. 186–187, pt. 1, pp. 28–34. doi: 10.1016/0043-1648(95)07190-3.

35.  Field J.E. ELSI conference: Invited lecture Liquid impact: Theory, experiment, applications. Wear, 1999, vols. 233–235, pp. 1–12. doi: 10.1016/S0043-1648(99)00189-1.


The content is available under the license Creative Commons Attribution 4.0 License.