F.M. Kadyrov , A.V. Kosterin ∗∗, E.V. Skvortsov ∗∗∗

Kazan Federal University, Kazan, 420008 Russia

E-mail:  Farhad1987@mail.ru ∗∗Alexander.Kosterin@kpfu.ru ∗∗∗Eduard.Scvortsov@mail.ru

Received October 13, 2018


Full text PDF

DOI: 10.26907/2541-7746.2019.1.66-74

For citation: Kadyrov F.M., Kosterin A.V., Skvortsov E.V. Seepage consolidation during elastic body deformation under normal load. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 1, pp. 66–74. doi: 10.26907/2541-7746.2019.1.66-74. (In Russian)

Abstract

The process of seepage consolidation of an elastic saturated body under the normal load that is instantly applied to its surface has been considered. An equality obtained using the conditions of compatibility of deformations has been added to the well-known spatial consolidation scheme. It has been shown that the sum of effective normal stresses satisfies the heat equation and can be found as a solution to the corresponding boundary value problem. A pressure-related auxiliary function that satisfies the Laplace equation has been introduced. The boundary condition for it is determined by the boundary condition for the above sum. The proposed scheme for studying the consolidation of an elastic body has been illustrated by the example of uniform normal loading on the surface of an elastic porous sphere. In the analytical form, the pressure of the fluid, the total and effective normal stresses of the skeleton, the displacement of points of the sphere and its surface in the process of consolidation have been found. It has been demonstrated that the pressure of the fluid at each fixed point inside the sphere decreases with increasing time.

Keywords: consolidation, elastic body, load, pressure

References

1. Tertsagi K. Teoriya mekhaniki gruntov [Soil Mechanics Theory]. Moscow, Gosstroiizdat, 1961. 507 p. (In Russian)

2. Gersevanov N.M. Osnovy dinamiki gruntovoi massy [Principles of Soil Dynamics]. Moscow, Leningrad, Gosstroiizdat, 1937. 241 p. (In Russian)

3. Florin V.A. Teoriya uplotneniya zemlyanykh mass [Theory of Soil Consolidation]. Moscow, Gosstroiizdat, 1948. 248 p. (In Russian)

4. Florin V.A. Osnovy mekhaniki gruntov [Principles of Soil Mechanics]. Vol. 1. Moscow, Leningrad, Gosstroiizdat, 1959. 357 p. (In Russian)

5. Biot M.A. General theory of three-dimensional consolidation. J. Appl. Phys., 1941, vol. 12, no. 2, pp. 155–164. doi: 10.1063/1.1712886.

6. Biot M.A. Consolidation settlement under rectangular load distribution. J. Appl. Phys., 1941, vol. 12, no. 5, pp. 426–430. doi: 10.1063/1.1712921.

7. Biot M.A. General solutions of the equations of elasticity and consolidation for a porous materials. J. Appl. Mech., 1956, vol. 23, no. 1, pp. 91–96.

8. Nikolaevskii V.N., Basniev K.S., Gorbunov A.T., Zotov G.A. Mekhanika nasyshchennykh poristykh sred [The Mechanics of Saturated Porous Media]. Moscow, Nedra, 1970. 335 p. (In Russian)

9.  Nikolaevskii V.N. Mekhanika poristykh i treshchinovatykh sred [Mechanics of Porous and Fissured Media]. Moscow, Nedra, 1984. 232 p. (In Russian)

10. Bear J., Corapcioglu M.Y. Fundamentals of Transport Phenomena in Porous Media. Dordrecht, Martinus Nijhoff Publ., 1984. 1003 p.

11. Coussy O. Mechanics and Physics of Porous Solids. London, John Wiley and Sons, 2010. 300 p.

12. Shiffman R.L. A bibliography of consolidation. In: Bear J., Corapcioglu M.Y. Fundamentals of Transport Phenomena in Porous Media. Dordrecht, Martinus Nijhoff Publ., 1984, pp. 617–669.

13. Selvadurai A.P.S. The analytical method in geomechanics. Appl. Mech. Rev., 2007, vol. 60, pp. 87–106. doi: 10.1115/1.2730845.

14. Kosterin A.V., Skvortsov E.V. Seepage consolidation of elastic half-space under an axisymmetric load. Fluid Dyn., 2014, vol. 49, no. 5, pp. 627–633. doi: 10.1134/S0015462814050093.

15. Kosterin A.V., Skvortsov E.V. Seepage consolidation under plane deformation of elastic half-space. Fluid Dyn., 2018, vol. 53, no. 2, pp. 270–276. doi: 10.1134/S0015462818020106.

16. Timoshenko S.P., Goodier J.N. Theory of Elasticity. New York, McGraw-Hill, 1951. 506 p.

17. Egorov A.G., Kosterin A.V., Skvortsov E.V., Konsolidatsiya i akusticheskie volny v nasyshchennykh poristykh sredakh [Consolidation and Acoustic Waves in Saturated Porous Media]. Kazan, Izd. Kazan. Univ., 1990. 102 p. (In Russian)

18. Detornay E., Cheng A.H.-D. Fundamentals of poroelasticity. In: Hudson J.A. Comprehensive Rock Engineering: Principles, Practice and Projects. Vol. 2. Oxford, Pergamon Press, 1993, pp. 113–171.

19. Cryer C.W. A comparison of the three-dimensional consolidation theories of Biot and Terzaghi. Q. J. Mech. Appl. Math., 1963, vol. 16, no. 4, pp. 401–412. doi: 10.1093/qjmam/ 16.4.401.

20. Lure A.I. Prostranstvennye zadachi teorii uprugosti [Spatial Problems of the Theory of Elasticity]. Moscow, Gosizdat. Tekh.-Teor. Lit., 1955. 491 p. (In Russian)

21. Novatskii V. Teoriya uprugosti [Theory of Elastisity]. Moscow, Mir, 1975. 872 p. (In Russian)

22. Polyanin A.D. Spravochnik po lineinym uravneniyam matematicheskoi fiziki [Handbook of Linear Equations of Mathematical Physics]. Moscow, Fizmatlit, 2001. 576 p. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.