A.I. Maimistov*, E.I. Lyashko**

National Research Nuclear University MEPhI, Moscow, 115409 Russia

 E-mail: *aimaimistov@gmail.com, **ostroukhova.ei@gmail.com

Received November 9, 2017

Full text PDF

Abstract

The refraction and reflection phenomena occurring at the boundaries of dielectric waveguides manufactured from the unusual materials have been discussed. Such materials are topological insulators and hyperbolic metamaterials with the electromagnetic properties being different from those for the ordinary dialectics. For example, the polarization of the refracted and reflected waves can be changed; the total internal reflection occurs at small angles of the incident wave that is less than a certain critical angle. As a result, the waveguides acquire new characteristics that distinguish them from the standard dielectric waveguides.

Keywords: interface, total internal reflection, magnetoelectric effect, waveguide, hyperbolic metamaterial

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 15-02-02764a).

Figure Captions

Fig. 1. The path of rays bending at the boundary between the isotropic and hyperbolic media. The incidence angles in the sector highlighted in gray indicate the rays with total internal reflection.

References

1. Elser J., Wangberg R., Podolskiy V.A., Narimanov E.E. Nanowire metamaterials with extreme optical anisotropy. Appl. Phys. Lett., 2006, vol. 89, no. 26, art. 261102, pp. 1–3. doi: 10.1063/1.2422893.

2. Noginov M.A., Barnakov Yu.A., Zhu G., Tumkur G., Li H., Narimanov E.E. Bulk photonic metamaterial with hyperbolic dispersion. Appl. Phys. Lett., 2009, vol. 94, no. 15, art. 151105, pp. 1–3. doi: 10.1063/1.3115145.

3. Drachev V.P., Podolskiy V.A., Kildishev A.V. Hyperbolic metamaterials: New physics behind a classical problem. Opt. Express, 2013, vol. 21, no. 12, pp. 15048–15064. doi: 10.1364/OE.21.015048.

4. Babicheva V.E., Shalaginov M.Y., Ishii S., Boltasseva A., Kildishev Al.V. Long-range plasmonic waveguides with hyperbolic cladding. Opt. Express, 2015, vol. 23, no. 24, pp. 31109–31119. doi: 10.1364/OE.23.031109.

5. Lyashko E.I., Maimistov A.I. Linear guided waves in a hyperbolic planar waveguide. Dispersion relations. Quantum Electron., 2015, vol. 45, no. 11, pp. 1050–1054.

6. Lyashko E.I., Maimistov A.I. Guided waves in asymmetric hyperbolic slab waveguides: The TM mode case. J. Opt. Soc. Am. B, 2016, vol. 33, no. 11, pp. 2320–2330. doi: 10.1364/JOSAB.33.002320.

7. Lyashko E.I., Maimistov A.I. Modes of a nonlinear planar waveguide with a dielectric layer immersed in a hyperbolic medium. Quantum Electron., 2017, vol. 47, no. 11, pp. 1053–1063.

8. Hasan M.Z., Kane C.L. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, vol. 82, no. 4, pp. 3045–3067. doi: 10.1103/RevModPhys.82.3045.

9. Qi X.-L., Hughes T.L., Zhang Sh.-Ch. Topological field theory of time-reversal invariant insulators. Phys. Rev. B., 2008, vol. 78, no. 19, art. 195424, pp. 1–43. doi: 10.1103/PhysRevB.78.195424.

10. Karch A. Surface plasmons and topological insulators. Phys. Rev. B., 2011, vol. 83, no. 24, art. 245432, pp. 1–5. doi: 10.1103/PhysRevB.83.245432.

11. Lyashko E.I., Maimistov A.I. Surface waves at the interface between a dielectric and a topological insulator. Opt. Spectrosc., 2016, vol. 121, no. 4, pp. 635–642. doi: 10.1134/S0030400X16100155.


For citation: Maimistov A.I., Lyashko E.I. The features of waveguides from hyperbolic metamaterials  and  topological  insulators. Uchenye  Zapiski  Kazanskogo  Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 1, pp. 17–24. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.