R.Kh. Latypov, E.L. Stolov
Kazan Federal University, Kazan, 420008 Russia

Полный текст PDF

Abstract

In this paper, we continue to study of a novel family of generators producing true uniform random numbers. The generator consists of a number of identical ternary logic combinational gates. In our previous work, the main attention was dedicated to the schemes composed of the gates in a ring. Other circuits are taken into consideration in this paper. All the units are characterized by time delays that are random and independent. If this time delay has an exponential distribution, then the theory of generator's behaviour is based on the Erlang equations. Some other models are also considered. The features of the multidimensional random vectors produced by the generator are discussed. They can be used for identification of the generator. This article is an extended version of the report presented by the authors at conference [Latypov R.Kh., Stolov E.L. Ternary jitter-based true random number generator. IOP J. Phys.: Conf. Ser., 2017, vol. 783, art. 012064. doi: 10.1088/1742-6596/783/1/012064].

Keywords: ternary logic, true random number generator, jitter

References

1. Asmussen S., Glynn P.W. Stochastic Simulation: Algorithms and Analysis. New York, Springer, 2007. 476 p. doi: 10.1007/978-0-387-69033-9.
2. Ferguson N., Schneie B., Kohno T. Cryptography Engineering: Design Principles and Practical Applications. Indianapolis, Wiley, 2010. 384 p.
3. Brederlow R., Prakash R., Paulus C., Thewes R. A low-power true random number generator using random telegraph noise of single oxide-traps. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Pap., 2006, pp. 536–537. doi: 10.1109/ISSCC.2006.1696222.
4. Buchovecka S., Lorencz R., Kodytek F., Bucek J. True random number generator based on ROPUF circuit. Proc. 2016 Euromicro Conf. Digital Syst. Des., 2016, pp. 519–523. doi: 10.1109/DSD.2016.36.
5. Tokunaga C., Blaauw D., Mudge T. True random number generator with a metastability-based quality control. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Pap., 2007, pp. 404–405. doi: 10.1109/JSSC.2007.910965.
6. Horowitz P., Hill W. The Art of Electronics. Cambridge, Cambridge Univ. Press, 1980.
1125 p.
7. Petrie C.S., Connelly J.A. A noise-based IC random number generator for applications in cryptography. Proc. IEEE Int.Symp. Circuits Syst., Atlanta, 1996, vol. 4, pp. 324–327. doi: 10.1109/81.847868.
8. Golic J.D. New methods for digital generation and postprocessing of random data. IEEE Trans. Comput., 2006, vol. 55, no. 10, pp. 1217–1229. doi: 10.1109/TC.2006.164.
9. Sunar B., Martin W.J., Stinson D.R. A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput., 2007, vol. 56, no. 1, pp. 109–119. doi: 10.1109/TC.2007.250627.

10. Kuznetsov V.M, Pesoshin V.A., Stolov E.L. Markov model of a digital stochastic generator. Autom. Remote Control, 2008, vol. 69, no. 9, pp. 1504–1509. doi: 10.1134/S0005117908090051.
11. Wieczorek P.Z., GoÃlofit K. Dual-metastability time-competitive true random number generator. IEEE Trans. Circuits Syst., 2014, vol. 61, no. 1, pp. 134–145. doi: 10.1109/TCSI.2013.2265952.
12. Robson S., Leung B., Gong G. Truly random number generator based on a ring oscillator utilizing last passage time. IEEE Trans. Circuits Syst., II: Express Briefs, 2014, vol. 61, no. 12, pp. 937–941. doi: 10.1109/TCSII.2014.2362715.
13. Amaki T., Hashimoto M., Onoye T. An oscillator-based true random number generator with jitter amplifier. Proc. IEEE Int. Symp. Circuits Syst., 2011, pp. 725–728. doi: 10.1109/ISCAS.2011.5937668.
14. Guo C., Zhou Y., Liu H., Zhu N. On the jitter and entropy of the oscillator-based random source. Proc. 6th Int. Conf. Comput., Commun. Networking Technol., 2015, pp. 1–5. doi: 10.1109/ICCCNT.2015.7395169.
15. Weigandt T.C., Kim B., Gray P.R. Analysis of timing jitter in CMOS ring oscillators. Proc. IEEE Int. Symp. Circuits Syst., 1994, pp. 27–30. doi: 10.1109/ISCAS.1994.409188.
16. Liu B. On VLSI statistical timing analysis and optimization. Proc. IEEE 8th Int. Conf. on ASIC, 2009, pp. 718–721. doi: 10.1109/ASICON.2009.5351306.
17. Liu T., Rabaey J. Statistical analysis and optimization of asynchronous digital circuits. Proc. IEEE 18th Int. Symp. on Asynchronous Circuits Syst., 2012, pp. 1–8. doi: 10.1109/ASYNC.2012.21.
18. Yahya E., Fesquet L., Ismail Y., Renaudin M. Statistical static timing analysis of conditional asynchronous circuits using model-based simulation. Proc. IEEE 19th Int. Symp. on Asynchronous Circuits Syst., 2013, pp. 67–74. doi: 10.1109/ASYNC.2013.12.
19. Xiao R., Chen C. Statistical delay modeling for single-electron-based circuits. IEEE Trans. Nanotechnol., 2014, vol. 14, no. 4, pp. 676–686. doi: 10.1109/TNANO.2014.2315502.
20. Islam A., Nakai T., Onodera H. Statistical analysis and modeling of Random Telegraph Noise based on gate delay variation measurement. Proc. Int. Conf. Microelectron. Test Struct., 2016, pp. 82–87. doi: 10.1109/ICMTS.2016.7476179.
21. Kim J., Kim W., Kim Y. Efficient statistical timing analysis using deterministic cell delay models. IEEE Trans. Very Large Scale Integr. Syst., 2015, vol. 23, no. 11, pp. 2709–2713. doi: 10.1109/TVLSI.2014.2364736.
22. Wu X.W., Prosser F.P. CMOS ternary logic circuits. IEE Proc.-G.: Circuits, Devices Syst., 1990. vol. 137, no. 1, pp. 21–27. doi: 10.1049/ip-g-2.1990.0005.
23. Gaikwad V.N., Deshmukh P.R. Design of CMOS ternary logic family based on single supply voltage. Proc. IEEE Int. Conf. on Pervasive Comput., Sydney, 2015, vol. 9, pp. 1–6. doi: 10.1109/PERVASIVE.2015.7087114.
24. Lisa N.J., Babu H.Md.H. Design of a compact ternary parallel adder/subtractor circuit in quantum computing. Proc. IEEE Int. Symp. on Mult.-Valued Logic, 2015, pp. 36–41. doi: 10.1109/ISMVL.2015.23.
25. Latypov R.Kh., Stolov E.L. Ternary jitter-based true random number generator. IOP J. Phys.: Conf. Ser., 2017, vol. 783, art. 012064. doi: 10.1088/1742-6596/783/1/012064.
26. Kleinrock L. Queueing Systems. Vol. I: Theory. New York, Wiley-Intersci., 1980. 417 p.
27. Marcus M., Mink H. A Survey of Matrix Theory and Matrix Inequalities. Boston, Allys and Bacon, 1964. 232 p.

28. Bellman R. Introduction to Matrix Analysis. New York, Macgrow-Hill, 1960. 365 p.

Recieved
March 21, 2017

Latypov Roustam Khafizovich, Doctor of Technical Sciences, Head of Department of System Analysis and Information Technologies
Kazan Federal University
ul. Kremlevskaya 18, Kazan, 420008 Russia
E-mail: Roustam.Latypov@kpfu.ru


Stolov Evgeny L'vovich, Doctor of Technical Sciences, Professor, Department of System Analysis and Information Technologies
Kazan Federal University
ul. Kremlevskaya 18, Kazan, 420008 Russia
E-mail: ystolov@kpfu.ru


For citation: Latypov R.Kh., Stolov E.L. Theory of ternary jitter-based true random number generators composed of identical gates. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159, no. 2, pp. 246–262.

Для цитирования: Latypov R.Kh., Stolov E.L. Theory of ternary jitter-based true random number generators composed of identical gates // Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки. – 2017. – Т. 159, кн. 2. – С. 246–262.


Контент доступен под лицензией Creative Commons Attribution 4.0 License.