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Abstract

In this paper, we continue to study of a novel family of generators producing true uniform
random numbers. The generator consists of a number of identical ternary logic combinational
gates. In our previous work, the main attention was dedicated to the schemes composed of
the gates in a ring. Other circuits are taken into consideration in this paper. All the units are
characterized by time delays that are random and independent. If this time delay has an expo-
nential distribution, then the theory of generator’s behaviour is based on the Erlang equations.
Some other models are also considered. The features of the multidimensional random vectors
produced by the generator are discussed. They can be used for identification of the generator.
This article is an extended version of the report presented by the authors at conference [Laty-
pov R.Kh., Stolov E.L. Ternary jitter-based true random number generator. IOP J. Phys.:

Conf. Ser., 2017, vol. 783, art. 012064. doi: 10.1088/1742-6596/783/1/012064].
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Introduction

Random numbers are important for cryptographic applications, lotteries, stochastic
modelling, randomized algorithms, online gambling, etc. [1, 2]. The problem of gene-
rating true random numbers lies in the fact that computers are basically predictable
devices that perform calculations and bring answers based on mathematical algorithms.
True random number generator (TRNG) is a type of random number generators that
produces unpredictable random number sequence using a random source. Any TRNG
must introduce an unpredictable element from the real world into the algorithm, i.e., use
a non-deterministic physical phenomenon [3–5]. One of such phenomenons is jittering in
digital circuits [6–14]. The TRNG we propose in this paper is an asynchronous circuit
utilizing jittering as a source of entropy. It results from feedback in an asynchronous
schema consisting of identical gates, while each gate is a combinational circuit.

Delay modelling is among the most difficult topics in asynchronous circuit analysis.
Because of its peculiarities, asynchronous circuit components have to be assigned with
probabilistic delays for accurate timing analysis. Statistical static timing analysis is
a method of computing statistical distribution for the output arrival time based on
the statistical input arrival time and the statistical input-to-output pin delay [15–21].
In the present paper, we propose a statistical method for delay estimation in generator.
The effectiveness of the proposed method will be analyzed theoretically. Our numerical
evaluations show that this method provides an efficient way to model the dynamic
behavior of TRNG.

Most of cited papers concern binary schemes. Development of ternary logic devices
seems to be prospective in providing a higher speed of arithmetic operations; hence,
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Fig. 1. Version of the ring-like generator containing three ternary units

development of such circuits becomes an urgent problem [22–24]. In our paper, we
present a new family of TRNGs that can be implemented by using only ternary logic
gates. The purpose of the work is to theoretically study the behavior of such devices.

The main body of the paper is organized as follows: In Section II, the basic scheme
of the ring-like TRNG (and also its mathematical theory) is given; in Section III, func-
tions suitable for generator design are described; in Section IV, statistical properties of
the basic generator are studied; in Section V, an alternative generator design is pro-
posed; Section VI is dedicated to implementation of the generator; Conclusions are given
in Section VII.

Throughout this paper, while dealing with matrices, the following notation is used:

A. A[i, j] represents an element of matrix A standing at i-th row and j -th column .

B. A[i, ∗] represents the i-th row of matrix A, A[∗, j] is the j -th column of this
matrix.

C. θ represents the zero matrix.

D. Bold symbols, such as P , are used for vector designations.

1. Preliminaries and basic scheme

Since this paper continues our previous research [25], some of the already obtained
results must be recalled. The balanced ternary logic is a special case of ternary logic
where the digits have the values –1, 0, and 1. Here, we will focus on two-input single-
output functions or gates.

1.1. Ring-like TRNG. Consider the scheme shown in Fig. 1, where F stands for
a ternary combinational gate. It realizes the function c = F (a, b), a, b, c ∈ {−1, 0, 1} .
Generally, the scheme consists of N gates. Renumber all the units via numbers in the
interval [0, N −1]. The output of the unit which uses the number k is connected to one
of the inputs of the same unit and to the input of the unit with the number k−1 mod N
(see Fig. 1). After one input signal of the gate changes, the output signal of the gate
changes tool; but it takes a delay time DT. In the paper, a statistical delay model is
considered.

According to this model, the following assumptions are accepted:

A. DT is a stochastic value having an exponential distribution for all units with the
same parameter T . The latter means that P (DT < d) = 1 − exp(−Td). In what
follows, we will assume that, for exponential distribution, T = 1 ; it does not limit
the generality of the arguments.

B. At any time, only one unit can change its output; all those events are independent.

1.2. Basic function. To guarantee good properties of the TRNG, some restric-
tions on the function F are imposed. First of all, the TRNG must have no stable states.
Suppose that the following formula takes place:

c = F (a, b), ∀ (a, b), c 6= a, b. (1)
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Table 1. Basic function F (a, b)

Name F (0, 0) F (1, 1) F (−1,−1)

F1 1 –1 0

F2 1 –1 1

It means that only the values of F (a, a), a ∈ {−1, 0, 1}, must be defined. It was proved
that there exist only two different functions, which obey (1). These are the functions
defined by the Table 1 [25].

1.3. Erlang equations. All the restrictions imposed on the system allow us to
implement the Erlang theory [26] to the generator. Let sk(t) be the output signal of
the unit with the number k at the time t. Denote the state of the TRNG at the time t
by vector S(t) = 〈s0(t), . . . , sN−1(t)〉. Hence, the system has M = 3N states, which are
also indexed by the numbers from 0 to M −1. Let i1, . . . , im for each n ∈ [0,M −1] be
a list of all indices of the states, for which it is possible to transfer the TRNG to the state
Sn from the states Sik

, k = 1, . . . ,m, as a result of a change of the output signal of one
of the units. This list of the states depends on n. Create a system of differential equations
of the Erlang type describing the dynamics of the TRNG. Let Pn(t) be the probability
that the TRNG is in a state number n at the time t. The following equation describes
the dynamics of the generator

dPn

dt
= −NPn(t) +

m
∑

k=1

Pik
(t), (2)

where m, i1, . . . , im depend on n . This Erlang type equation is usually used in descrip-
tion of Queueing Systems.

1.4. Dynamics of generator states. As far as the type of F has been defined,
all parameters can be found in (2). Using a matrix form, rewrite the system as follows:

dP

dt
= Matr · P. (3)

Here P = 〈P0, P1, . . . , PM−1〉
T .

First of all, one has to index all states of the TRNG. Let S = 〈s0, s1, . . . , sN−1〉 be
a state of TRNG, sk ∈ {−1, 0, 1}. Index of S is a number

Ind(S) =

N−1
∑

k=0

3k(sk + 1). (4)

It is convenient to present the matrices as tables. The rows and columns of the ma-
trix are numbered using the index calculated by the formula (4). In accordance with
the definition, Matr[i, j] = 1, i 6= j if and only if it is possible to transfer to the state
with index i from the state with index j. Matr[k, k] = −N ∀ k. Matr is presented in
Table 2 for N = 1 and in Table 3 for N = 2.

Formally, knowing matrix Matr and differential equations (3), it is possible to find
vector P(t) for any t, if P(0) is known, where P(0) is a stochastic vector defining
initial distribution of states of the TRRG [28]. Our goal is to obtain properties of this
vector without searching an exact solution of the system.
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Table 2. Matrix for N = 1

R\C 0 1 2

0 –1 0 1
1 1 –1 0
2 0 1 –1

Table 3. Matrix for N = 2

R\C 0 1 2 3 4 5 6 7 8

0 –2 0 0 0 0 0 0 0 0
1 1 –2 1 0 0 0 0 1 0
2 0 1 –2 0 0 1 0 0 1
3 1 0 0 –2 0 1 1 0 0
4 0 0 0 0 –2 0 0 0 0
5 0 0 1 1 1 –2 0 0 0
6 0 0 0 1 0 0 –2 1 1
7 0 1 0 0 1 0 1 –2 0
8 0 0 0 0 0 0 0 0 –2

1.5. Asymptotic properties of P(t) . It can be easily seen that, for N = 2 ,
there are lines in Matr that have no 1’s. They are Matr[0, :], Matr[4, :], Matr[8, :].
It means that there are no transfers of the TRNG to the states with such indices; in
other words, these states are unattainable. It is proved in [25] that the states of form
〈x, x, . . . , x〉 with x ∈ {−1, 0, 1} are the only unattainable states of the generator with
N > 1.

In general case, exclude from consideration the states of the form 〈x, x, . . . , x〉 for
N > 1. It means that one should exclude three items from vector P and three rows
and three columns from matrices Matr. We keep the previous notation for new P and
Matr. Since the matrix Matr in (3) is constant, the solution of the equation can be
presented as follows

P(t) = exp(Matr · t) · P(0). (5)

According to the definition, we have

Matr = Q − N · I, (6)

where I represents the identity matrix, while Q is a binary matrix containing either 1
or 0. Both the matrices have the size M ′×M ′, M ′ = M −3. The following proposition
is proved in [25]

Proposition 1. Let e0, e1, . . . , eM ′−1 be all eigenvalues of Q and

|e0| ≥ |e1| ≥ · · · ≥ |eM ′−1|. (7)

Then e0 = N .

Let m0,m2, . . . ,mM ′−1 be all eigenvalues of Matr. We have

mi = ei − N ∀ i. (8)

Hence m0 = 0 and inequalities Real(mj) ≤ 0, j = 1, . . . ,M ′ − 1, are fulfilled. Suppose
that we have the strong inequalities

Real(mj) < 0, j = 1, . . . ,M ′ − 1. (9)
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It means that matrix E(t) = exp(t·Matr), t ≥ 0 with eigenvalues exp(t·mi) has a single
characteristic root 1, while all other characteristic roots of this matrix have absolute
values lesser than 1. If t → ∞, then E(t) converges to a stable matrix. The same is
true for the vector P(t), and

dP(t)

dt
→ 0, t → ∞. (10)

Following [26], one can find a stochastic vector P = P(∞) by solving the system

Q · P = N P. (11)

The case N = 1. There are three states of the TRNG: 〈−1〉, 〈0〉, 〈1〉. The eigenva-
lues of Matr are 0, –1.5, –1.5, thus (9) is fulfilled, and P = 〈1/3, 1/3, 1/3〉. The latter
means that stable vector P possesses the uniform distribution.

The case N = 2. Here the eigenvalues of Matr are 0, –1, –4, –3, –3, –1, and the sta-
ble vector is 〈0.17, 0.17, 0.17, 0.17, 0.17, 0.17〉; hence, in this case, we have the uniform
distribution as well, excluding three unattainable states.

The case N = 3. In this case (9) is fulfilled, but the stable vector P has components

0.037 0.037 0.037 0.037 0.074 0.037
0.037 0.037 0.037 0.037 0.037 0.037
0.037 0.074 0.037 0.037 0.037 0.074
0.037 0.037 0.037 0.037 0.037 0.037

. (12)

Hence, we have a nonuniform final distribution of states. The reason is the existence of
special states of the generator: 〈−1, 0, 1〉 , 〈1,−1, 0〉, 〈0, 1,−1〉. In fact, it is the same
state, because every state is a result of cyclic transform of other states (see Fig. 1).

2. General case

Let us recall some facts relating to the matrix theory [27]. Matrix Q is a decompos-
able matrix if there exists a permutation matrix Pr such that

PrT · Q · Pr =

(

A 0
B C

)

where A, C represent square matrices. Non-negative matrix Q is an indecomposable
matrix if for any of two indexes i, j there exists integer k (dependent on these indexes)
such that

Qk[i, j] > 0. (13)

In our case, the matrix Q is a binary matrix, and it can be considered as a transfer
matrix of the TRNG. Condition (13) is equivalent to the following one: for any two
states S , S

′ of the TNRG there is a chain of states S0 = S, S1, . . . ,Sk = S
′ such

that the transfer of state Si → Si+1 is a result of the change of one of the inputs of
the TRNG.

Proposition 2. Matrix Q in (6) is an indecomposable matrix.

Proof. We assume that N > 2 and all the states of the form 〈x, x, . . . , x〉,
x ∈ {−1, 0, 1} are excluded. Our goal is to prove that the matrix Matr is an inde-
composable one. It is sufficient to state that each state S of the TRNG is attainable
from any other state U via a finite number of steps. We divide the proof into two parts.
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First of all, show that any state is attainable from U = 〈0,−1, . . . ,−1〉. Let S
′ =

= 〈s0, . . . , sN−1〉. Recall that the states, where the generator can transfer to from S
′

after one gate changes its output, have the form

〈p0, p1, . . . , pN−1〉.

Here
pk = F (sk, sk+1), k < N − 1, pN−1 = F (sN−1, s0) (14)

and inequality pk 6= sk is true just for one index k. Let the generator be in state
U. After output s1 changed, we obtain state U1 = 〈0, 1,−1, . . . ,−1〉. After signal s1

changed again, the TRGN transfers to state U2 = 〈0, 0,−1, . . . ,−1〉. It means that all
states of the form 〈0, a,−1, . . . ,−1〉, a ∈ {−1, 0, 1} are attainable from U. In the same
way one can establish that all states of the form

〈0, s1, . . . , sN−2,−1〉 (15)

are attained from U as well. If signal s0 changes in state U , the next state of the
TRNG is U1 = 〈1,−1, . . . , 〉. Repeating the previous arguments, one can see that all
states of the form

〈1, s1, . . . , sN−2,−1〉 (16)

are attained from U. Let S = 〈−1, 0, s2, . . . , sN−2,−1〉 be arbitrary state of the TRNG.
Changing signal s0 in (16), where s2 = 0 , one establishes attainability of S. In the same
way it can be proved that all states of the form

〈−1, s′1, s2, . . . , sN−2,−1〉, s′1 ∈ {0, 1} (17)

are also attainable from U. Using (15),(16) and changing signal sN−1 , one gets the
attainability of states 〈0, s1, . . . , sN−2, 1〉 and 〈1, s1, . . . , sN−2, 0〉. Let us show that
states of the form

〈−1,−1, . . . ,−1, b, sk+1, . . . , sN−2,−1〉, b ∈ {0, 1} (18)

are also attainable states. According to (16),

S = 〈1, 1, . . . , 1, b, sk+1, . . . , sN−2,−1〉. (19)

We have F (1, b) = −1, so by changing signals s0, s1, . . . sk−1 one establishes the at-
tainability of the sates in (18). Finally, the attainability of such states as

〈0, 0, . . . , 0, b, sk+1, . . . , sN−2, 0〉, b ∈ {−1, 1} (20)

can be proved starting from (18), changing signal sN−1 and by changing afterwards
signals s0, s1, . . . sk−1.

In the second part of the proof, we have to prove the attainability of U from any
state S. Let S have the form (15). Consider pair s1, s2. If s1 = 1 or s1 = 0 , then we
always can gain the equality s1 = −1 by changing s1. The same arguments can implied
to state

〈0,−1, s2, . . . , sN−2,−1〉. (21)

If signal sN−1 6= −1 , then, by changing signal sN−1, one can convert it to –1. Suppose
now that S = 〈s0, . . . sN−1〉 and s0 6= 0. As before, by changing this signal, one can
gain the equality s0 = 0; so, it is the situation considered above.
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Fig. 2. N = 4 . Components of stable vector

It is known ( [27]) from the indecomposable matrix that the maximum positive
characteristic root has multiplicity equal to 1, so (9) holds. It means that the technique
for calculation of the distribution of states presented above is good for any number
units in the TRNG. The only problem is to find eigenvectors of a matrix of large size.
The examples show that the stable distribution of states, given by the components of
P , is not the uniform distribution for N > 2. Since the corresponding stable vectors
are of big size, we present the components of the vector in graphical form (see Fig. 2,
for example).

It means that a kind of dependence exists among different outputs of the TRNG.
This feature can be used as a marker of design of the generator. On the other hand,
because of the symmetry of the scheme, the output signal of any unit has the uniform
distribution.

3. Alternative design

As was mentioned above, there is a correlation among various components of the
final vector if N > 2. This correlation can be used for identification of the generator if
one has access to all outputs of the schema. The ring-like connection of the units is not
the only design that can be implemented in generator design. Two other circuits, each
containing three units, are presented in Figs. 3, 5. There is an important property that
holds true for all the schemes investigated in this paper, that is a kind of symmetry
following from

Proposition 3. Let σ be a permutation, σ(−1) = 0, σ(0) = 1, σ(1) = −1 . Then

F (σ(x), σ(y)) = σ(F (x, y)). (22)

Proof. Let G(x, y) = F (σ(x), σ(y)). The correctness of the proposition results
from Table 4.
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Table 4. To proof of Proposition 3

x, y F (x, y) G(x, y)

–1, –1 0 1
0, 0 1 –1
1, 1 –1 0
–1, 0 1 –1
–1, 1 0 1
0, 1 –1 0

Let σ be as before. This permutation defines a transform Trind of the set of states
into itself. If S = 〈s0, s1, . . . , sN−1〉, then

Trind(S) = 〈σ(s0), σ(s1), . . . , σ(sN−1)〉. (23)

There is one-to-one relation between states and their indexes, so we can substitute
Trind(i) by Trind(S) , where i is the index of S. The following formula is an easy
implication of (22)

Q[i, j] = Q[Trind(i), T rind(j)], (24)

where Q is defined accordingly (6).
It is difficult to suggest a theory that would be acceptable in the general case, so we

restrict ourself to direct calculations. Equation (3) holds as before, but Matr depends
on the design. Since any state of the generator is a vector of length 3, the sum of items
in each column in matrix Q in (6) is 3 (mainly all non-zero items in Q are ones, but it is
possible that a transfer from one state to other state is a result of the change of output
in two different gates). It means that 3 is an eigenvalue of Q , and all other eigenvalues
ei of this matrix meet inequalities (7). All the arguments used above for description of
asymptotic behavior P are fulfilled in the cases under consideration if the multiplicity
of the characteristic root 3 of the matrix Q equals one. This condition will be stated
via calculation. Special attention is drawn to the states having zero probabilities in the
final distribution, because it is an important property of the generator. Thus, it is a very
important feature of the generator that can be used for its identification, because some
known vectors will not be observed on its output. All results of the calculations are
presented in graphical mode in what follows.

3.1. Case Design 1, Fig. 3. lists of eigenvalues and components of the final
vector are presented in Fig. 4. It can be seen that here is only one characteristic root
equal to 3, and all other roots meet (9), so the final vector P exists. We see that a part
of components of P are zeros. It means that a set of vectors can not be produced if
the time after the onset of work is long.

3.2. Case Design 2, Fig. 5. Let us examine the property of the circuit in Fig. 5.
In Fig. 6, graphical representation of the eigenvalues and the component of the final

vector are shown. As before, there is only one eigenvalue that is equal to 3, and the final
vector P exists. Some of the components are zeros again, but they have indices, which
do not coincide with those for Design 1. Thus, we have a possibility to distinguish
between both generators.

4. Implementation of generator and its efficiency

Standard implementation of the generators described above is presented in Fig. 7.
The clock line denotes a series of impulses with interval D. The efficiency of the circuit
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Fig. 4. Design 1: a) eigenvalues , b) final distribution
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Table 5. δ criteria of quality of TRNG for various N and D

N\D 2 4 8 16

1 3.1e–2 1.6e–3 3.9e–6 2.1e–7
2 4.6e–2 6.1e–3 1.1e–4 3.8e–8
3 3.6e–2 6.9e–3 2.4e–4 3.2e–7
4 2.1e–2 3.7e–3 1.4e–4 2.6e–7
5 9.8e–3 2.1e–3 9.2e–5 2.0e–7
6 6.0e–3 9.4e–4 3.6e–5 7.1e–8

depends on the value of D – the less is D , the more numbers will be produced in
the given time interval t0. As a rule, independent signals are needed on the output of
the generator, so D cannot be an arbitrary value. The generator must “forget” the pre-
vious state when a random number is released. That time also depends on the kind of
the signal one has to obtain.

4.1. Criteria of minimal time between two releases. Suppose that the only
generator’s feature under investigation is the minimal time to reach stability of distri-
bution of the generator’s states. Formally, the generator needs infinite time to attain
the distribution of the states described by vector P. In real situation, a condition such
as(25 is used:

∣

∣

∣

∣

dP(t)

dt

∣

∣

∣

∣

< ǫ, t > t0, (25)

and ǫ is a small quantity given in advance (see (10)). In other words, D is as long as
the time that is enough to transfer the generator to a state that is close to the stable
state. To this end, we must evaluate the difference between the matrix Stab

Stab = (P,P, . . . ,P)

and the matrix Astab(D) = exp(D · Matr). Let E = 〈1, 1, 1, . . . , 1〉. Accordingly,
the definition, E · Matr = 〈0, 0. . . . , 0〉 = Θ is zero vector. Hence, E · MatrK = Θ for
any natural K, and E · Astab(D) = E. In other words, the sum of the entries in any
column of Astab(D) equals 1. Let

δ = max
u,v

|P[u, v] − Astab(D)[u, v]|. (26)

Choose δ as a distance between two matrices and as the criteria of quality of the gene-
rator. Some results of calculation relating to TRNGs with various N are presented
in Table 5.

Apply the same criteria to the alternative circuits described above. Since all of them
contain the same number of gates, a kind of evaluation of the quality of the design can
be done without calculation of δ . According to (8), all characteristic roots of Astab(t)
are

1, et·m1 , . . . , et·m26 , real(mi) < 0, i > 0.

We have | exp(m)| = exp(real(m)). If real(m) < 0 , then | exp(t · m)| → 0, t → ∞.
Recall [28] that Jordan box J is a square matrix of size p > 1

J(a) =









a 1 0 . . . , 0
0 a 1 . . . 0
. . . . .
0 0 0 0 a








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Table 6. Values of V depending on design of circuit

Des1 Des2

V –1 –0.59

Table 7. δ criteria for various design

Design\D 2 4 8 16

Des1 3.2e–2 4.7e–3 8.3e–5 2.8e–8
Des2 6.6e–2 1.9e–2 1.7e–3 1.7e–5

If p = 1 , then J(a) = (a). It is known [28]

eJ(a) =









ea ea/1! ea/2! . . . , ea/(p − 1)!
0 ea ea/1! . . . , ea/(p − 2)!
. . . . .
0 . . . 0 0 ea









,

or
exp(J(a)) = ea · B,

where matrix B is independent of a. On the other hand, any matrix is similar to
a Jordan form

Matr = Tr−1 · diag(J1, . . . JL) · Tr

where Jk, k = 0, 1, . . . , L, are Jordan boxes. As a result,

Astab(t) = Tr−1 · diag(1, et·m1 · B1, . . . , e
t·m26) · B26 · Tr, (27)

where matrix Tr is independent of t. It follows from (27) that

Stab = Tr−1 · diag(1, 0, ·, 0) · Tr,

and the degree of convergence Astab(t) → Stab, t → ∞ depends mainly on

V = max real(mi), i > 0. (28)

The values of V depending on design are presented in Table 6.
It is of interest to compare these values with analogous value −0.84 for the TRNG

where N = 3. To test the hypothesis that the degree of convergence to the stable
distribution depends on V , calculate δ for the other circuits (see Table 7).]

By comparing Tables6 and 7, one can conclude that the lesser value V , is the better
is the degree of convergence.

4.2. Single output criteria. A more realistic situation is where a user needs
a generator that produces random uniform distributed numbers. Because of symmetric
design of ring-like TRNG, signals on any output have the same stable distribution and
each value has the probability of 1/3. The same is true for any of the circuits under
consideration although is not an evident fact.

Proposition 4. Let matrix Q in (6) have N as a characteristic root of multipli-

city 1 . Then signals on each output of any circuit, which are built by means of gates

with function F, have the uniform distribution.
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Table 8. P vector for various designs

State Des1 Des2

0 0. 0.
1 0. 0.04
2 0 0.04
3 0.07 0.08
4 0.03 0.
5 0.07 0.08
6 0.07 0.03
7 0.06 0.06
8 0.03 0.
9 0.03 0.
10 0.06 0.03
11 0.06 0.06
12 0. 0.04
13 0. 0.
14 0. 0.04
15 0.07 0.08
16 0.07 0.08
17 0.03 0.
18 0.03 0.
19 0.07 0.08
20 0.07 0.08
21 0.06 0.06
22 0.03 0.
23 0.07 0.03
24 0. 0.04
25 0. 0.04
26 0. 0.

Proof. Let P = 〈p0, p1, . . . , pM−1〉, M = 3N . The final probability of signal a on
input number i is

Pa =
∑

j∈U

pj ,

where j ∈ U if Sj = 〈s0, . . . , sj = a, . . . , sN−1〉. The theorem will be proved if we
demonstrate equality pi = pTrind

(i). According to (11), P is eigenvector of Q. Denote

PTr = 〈pTrind(0), pTrind(1), . . . , pTrind(M−1)〉,

where Trind is defined in (23). We have

PTr

T = Pr · P
T
, (29)

where Pr is a permutation matrix. Row Pr[i, ∗] has 1 in position Trind(i) and all other
elements in the row are zeros. Let B = Pr · Q · Pr′. Column Pr′[∗, j] contains 1 in
position Trind(j).

B[i, j] = (Pr · Q)[i, ∗] · Pr′[∗, j] = (Q[Trind(i), 1], . . . ,

Q[Trind(i),M − 1] · Pr′[∗, j] = Q[Trind(i), T rind(j)]

Now,(24) can be rewritten in form Pr · Q · Pr′ = Q. We have

Q · PTr

T = Pr · Q · Pr′ · Pr · P
T

= Pr · Q · P
T

= N · Pr · P
T

= N · PTr

T
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It means that PTr
T is an eigenvector for Q. According to the suggestion of Theorem 4,

there is only one eigenvector for Q corresponding to eigenvalue N, so PTr = P. In other
words, state S and Trind(S) have equal final probabilities.

The stable distributions of all designs are presented in columns of Table 8. To verify
the proposition, let us obtain the probability of signal –1 on gate S0. To this end, find
all the states of form 〈−1, x, y〉, where x, y are arbitrary values. Those states have
indexes 0, 3, 6, 9, 12, 15, 18, 21, 24. Create a new table by selecting rows with these
indexes from Table8 and find sum of items in each column. One reveals that all the
sums equal 1/3 (all the values in the table are truncated to 2 digits after point, so some
small errors can appear). The same can be done for the other gates and the values on
their outputs.

5. Conclusions

The suggestion that delay times in different units are independent events is intrinsic,
while the restriction on the form of distribution is much stronger. In practice, one has to
take into account physical properties of the gates. It is desirable for all the gates to have
identical electric load, otherwise the hypothesis that all units have the same delay time
distribution fails. For TRNG, the condition of the same electric load is fulfilled, and
this is a significant advantage of the design. On the other hand, one can obtain some
special feature of the generator, which was described above, by using an alternative
design. The accuracy of the results of the paper, if a deviation the the basic hypothesis
exists, needs additional research.
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Аннотация

В статье предлагается теория нового семейства генераторов случайных чисел, по-
строенных из комбинационных логических блоков. Каждый блок реализует одну и ту
же функцию трехзначной логики. Генератор состоит из нескольких таких блоков, и если
схема содержит обратные связи, то в результате возникает явление, получившее название
джиттер, или джиттеринг. Оно проявляется как случайное изменение сигнала на выхо-
дах блоков, а вся схема превращается в физический генератор случайных чисел. Основное
внимание уделяется схемам, имеющим кольцевую структуру, но наряду с ними изучают-
ся и другие схемы. В основе математической модели положено предположение, что все
блоки срабатывают с некоторой случайной задержкой, имеющей экспоненциальное рас-
пределение, и эти задержки для разных блоков являются независимыми случайными
величинами. Показано, что при указанных предположениях динамика генератора описы-
вается дифференциальными уравнениями типа уравнений Эрланга в теории массового
обслуживания. Рассматриваются также некоторые другие модели. Предложена процеду-
ра, превращающая указанное устройство в генератор независимых случайных величин,
имеющих равномерное распределение. Обсуждаются свойства генерируемых многомер-
ных случайных векторов, зависящие от способа соединения блоков в схеме. Статья явля-
ется расширенной версией доклада, сделанного авторами на конференции [Latypov R.Kh.,

Stolov E.L. Ternary jitter-based true random number generator // IOP J. Phys.: Conf. Ser. –
2017. – V. 783. – Art. 012064. – doi: 10.1088/1742-6596/783/1/012064].

Ключевые слова: трехзначная логика, физический генератор, случайные числа,
джиттер
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