22 июня 2016
Ученые КФУ создают механизмы влияния на одну из самых опасных бактерий

Борьба с заболеваниями, тяжело поддающимися лечению или вовсе ныне неизлечимыми – онкологическими, наследственными, а также вызванными различными патогенами, – является целью ученых, изучающих молекулярную структуру клетки.

Это научное направление - структурная биология - появилось более 50 лет назад после описания механизма репликации (разделения) ДНК на две идентичные молекулы, и является сегодня важнейшей частью исследовательских программ ведущих вузов мира. А возможности, которые открывает перед нами глубинное понимание происходящих в клетке механизмов, поражают воображение.

Подробнее об этом, а также том, как наши ученые планируют побороть одну из самых известных и опасных бактерий, почему молекулярных биологов можно назвать «работниками баррикад», а онкозаболевания – «непаханым полем», в интервью с руководителем НИЛ Структурная биология Института фундаментальной медицины и биологии КФУ, профессором Страсбургского университета Маратом Юсуповым.

 

-  То, чем мы занимаемся в университете, можно кратко выразить двумя словами - биохимия и биофизика, то есть, нами используются физические и химические методы для изучения биологических процессов.

Научная цель, которую мы поставили перед собой в лаборатории, – исследование белоксинтезирующего аппарата клетки, причем клетки патогена – стафилококка. Изучить его необходимо для того, чтобы понять, какие у него уязвимые точки, и как, соответственно, прекратить его жизнедеятельность, облегчив жизнь человеку.

В настоящее время бактерии, живущие в нашем организме, уничтожаются с помощью антибиотиков. Проблема в том, что существует множество стафилококковых штаммов, для борьбы с которыми не имеется лекарственных препаратов, и в некоторых случаях воспаление легких у человека, даже при должном лечении, оканчивается летальным исходом. К сожалению, таких примеров в мире множество. Но этого можно избежать, если бактерии, подавляющие человеческую жизнь, будут исследованы.

При множестве существующих для изучения механизмов в клетке, нами, как уже было сказано, был выбран следующий – ингибирование работы белоксинтезирующего аппарата, его основного компонента – рибосомы. Почему именно он? Дело в том, что есть клеточная система, которая в стрессовой ситуации выключает работу рибосомы за счет образования рибосомных димеров. В этой димерной форме рибосома не функционирует, ждет, когда стресс пройдет, и только потом включается в работу и начинает синтезировать белок снова.

 


Проще говоря, если мы «выключим» систему выработки белка в стафилококковой клетке, она умрет. Действие ровно такое же, как и у антибиотиков, когда маленькие молекулы связываются с рибосомой и «выключают» ее работу.


 

- Структурная биология – это не только борьба с клетками патогенов, но и попытка регулировать процессы в клетке человека?

- Да, обширной и популярной темой для структурной биологии является терапия онкологических заболеваний, требующая все больше информации о клеточных механизмах человека и необходимости описания их на физико-химическом уровне. Как правило, с пониманием приходит и противоядие. И в этой области наблюдается громадный прогресс. Из-за невероятного количества видов онкологических заболеваний создается видимость того, что направление не очень активно развивается. Но нужно понимать – для достижения прогресса в целом необходимо исследовать онкологический механизм каждого вида.

Одним из наиболее ярких позитивных примеров является очень высокая (90 процентов) вероятность излечения рака молочной железы, что является достижением молекулярных биологов, включая структурных.

 

Межинститутская группа исследователей НИЛ Структурная биология КФУ

 

В компетенцию структурных биологов входят и исследования для терапии генетических, наследственных заболеваний.

Наше тело – волосы, ногти, мышцы состоят из строительных, двигательных и других белков. Но основная их часть в клетках человека – энзимы, которые выполняют любые другие функции организма. Таким образом, если вы включаете или выключаете работу синтеза белка – рибосомы, то можете регулировать все, что происходит в организме. А это, в свою очередь, этап переворачивания генетической информации, записанной в ДНК. Белок – это аминокислотная последовательность, ДНК – нуклеотидная, то есть, информация в генах записана одним языком, а в белках – другим. Компонента клетки, комплекс, которые «переворачивает» или переводит информацию с одного языка на другой  – рибосома. Значимо то, что ее активность мы и пытаемся научиться регулировать.

И именно это особо актуально для терапии генетических, наследственных заболеваний. Дело в том, что генетическое заболевание вызывается мутацией, заложенной в организме с материнской или отцовской стороны. На каких-то этапах развития человека перенос информации из ДНК в белки, осуществляемый рибосомой, нарушается. Известно, что читаемая рибосомой последовательность генов начинается и заканчивается строго в определенной точке, прочитывается строго определенное количество нуклеотидов в ДНК, а затем эта информация превращается в белок, выполняющий какую-то активную функцию в клетке. Предположим, что в середине последовательности возникла мутация, которая не дает считывать информацию дальше, то есть, рибосома дочитывает до этого места и абортирует, соответственно, и белок получается не полным, а абортированным, все равно, что нефункциональные кусочки.

Из-за этого возникает генетическая болезнь. Подобных заболеваний в настоящее время насчитывают 300 видов. Ученые пытаются регулировать работу рибосомы, чтобы она при наличии подобных стоп-мутаций дочитывала информацию до конца. Опять-таки, это проблема структурной биологии.

К счастью, сегодня уже получены первые позитивные результаты – прочитывать поврежденную ДНК рибосому научила группа исследователей из США, Лос-Анджелеса посредством эксперимента. Научного объяснения факту ученые дать не смогли, и он не был принят научным сообществом, что привело к закрытию проекта. Правда медикамент успели успешно опробовать на добровольцах и исследования все же были продолжены после того, как пациенты подали на стартап ученых иск в суд. После инцидента, к слову, компания за год получила 120 млн. долларов инвестиций.

Аналогичные процессы разворачиваются по всему миру. Лаборатории, подобные нашей, активно работают в содружестве с госпиталями и также участвуют в разработке новых лекарств.

 


И для нас бактериальная тема стафилококка далеко не предел, рассматриваются варианты перехода к изучению эукариотических организмов высокой организации, среди которых – клетки человека. А это уже, как было сказано, работа над решением проблем онкологических и наследственных заболеваний.


 

- Какие еще патогены являются объектами исследований в мире?

- Их множество. Приведу пару примеров. В Латинской Америке исследуют трипаносомы – паразитарные одноклеточные организмы, распространяемые насекомыми и вызывающие сонную болезнь и болезнь Шагаса; особенность исследования заключается в том, что трипаносома - не бактерия, а эукариот.

Интересным примером является лейшмания, ставшая объектом бурных исследований в области структурной биологии после распространения среди американских военных в Ираке.

Добавлю, было время, когда люди умирали от СПИДа со стопроцентной вероятностью. Так продолжалось до тех пор, пока изучением заболевания не занялась группа профессоров одного из ведущих вузов США - Калифорнийского технологического института. Именно они придумывали первый ингибитор против протеазы СПИДа, который до сих пор является одним из трех лекарственных препаратов, применяемых при терапии, и в комплексном использовании дают человеку возможность вести полноценную жизнь. 


Как только происходит всплеск какого-либо заболевания, туда тут же бросаются молекулярные биологи и, проведя исследования, предлагают варианты борьбы с той или иной болезнью. И одна из таких научных групп – НИЛ Структурная биология КФУ.


 

О методологии

- В нашей работе используются современные биофизические и биохимические методы, группа ученых лаборатории – межинститутская. В нее входят биологи, физики, также планируется подключить к исследованиям химиков. В настоящее время работа выстраивается с биохимической лабораторией, используется ядерно-магнитный резонанс, микроскопия.

Самое главное ограничение, сковывающее проект, - отсутствие в КФУ двух из трех необходимых для исследований методов. Один из них – метод криоэлектронной микроскопии, который даёт возможность исследовать замороженные образцы и изучить структуру макромолекулярных комплексов на очень высоком уровне интерпретации, практически на молекулярном. Другой – метод рентгеноструктурного анализа, позволяет изучить структуру белка на химическом, атомарном уровне, когда каждый атом может быть распространен в трехмерном пространстве, что дает возможность предсказать, какие ингибиторы, малые молекулы могут дезактивировать белок.

Научно-исследовательских центров, в которых имелись бы все три метода, не так много. Также как и тех, где занимаются изучением рибосомы стафилококка. Проблема заключена и в самом объекте, и в методах исследования. В частности, один из немногих примеров – Институт имени Вейцмана в Израиле – ведущий и крупнейший биомедицинский центр мира, имеющий в структуре лабораторию, работающую с той же проблемой, что и мы. Возглавляет научную группу по исследованию стафилококка Ада Йонат – лауреат Нобелевской премии по химии.

 

О САЕ "Трансляционная 7П медицина"

- Считаю, что в Казанском федеральном университете была проведена грандиозная работа по переориентации биологического факультета, созданию всех условий для сотрудничества с физиками, химиками, медиками. Это, без сомнения, еще принесет свои плоды. Немаловажно, что у университета появилась своя клиника и получился такой замкнутый цикл, когда полное производство фундаментальных исследований, включая фармацевтический кластер, внедрение в клинику, сможет способствовать реализации крупных проектов в рамках одной организации. Проект грандиозный, его результаты, по большому счету, будем фиксировать не мы. Это, я считаю, благородно – сделать что-то масштабное не ради того, чтобы обогатиться, а заложить основу великого для своих детей.

Источник информации: Наталья Дорошкевич, Институт фундаментальной медицины и биологии