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ВВЕДЕНИЕ 

Одной из фундаментальных задач квантовой механики является полу-

чение точных решений уравнения Шрёдингера, так как они содержат исчер-

пывающую информацию о физических свойствах исследуемых квантовых 

систем. Несмотря на длительную историю развития этой области, число из-

вестных потенциалов, допускающих точное аналитическое решение, остаётся 

весьма ограниченным. Это стимулирует поиск новых методов и подходов, 

позволяющих расширить класс решаемых задач.  

На сегодняшний день разработан ряд методов, предназначенных для 

аналитического решения уравнения Шрёдингера. Среди них можно выделить 

метод прямого интегрирования, метод факторизации [1-3], суперсимметрич-

ную квантовую механику (ССКМ) [4-7], метод Венцеля–Крамерса–

Бриллюэна (СВКБ) [8], функционально-аналитический метод Никифорова–

Уварова[9], метод квазилинеаризации[10], теоретико-групповой подход [11], 

различные правила точного квантования [12-16], а также новейшие модифи-

кации этих подходов [17]. Каждый из этих методов обладает своими преиму-

ществами, но наибольшую универсальность и гибкость демонстрируют ме-

тод факторизации и суперсимметричная квантовая механика. 

В последние годы внимание исследователей все чаще сосредоточено на 

изучении квази-точно решаемых (КТР) и условно точно решаемых (УТР) по-

тенциалов. Для квази-точно решаемых потенциалов возможно точное вычис-

ление лишь конечного числа собственных значений гамильтониана, в то вре-

мя как для условно точно решаемых потенциалов точность решения достига-

ется при выполнении определённых условий на параметры потенциала. Ре-

шение таких задач часто требует использования полиномиальных анзатцев, 

канонических преобразований и суперсимметричных методов, а в некоторых 

случаях — сведения уравнения Шрёдингера к уравнению Хойна и дальней-

шего численного анализа. 
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Рисунок 1. Применимость и классификация точно решаемых моделей 

 

Работа посвящена освоению нового алгоритма применения метода фак-

торизации к задаче вычисления спектра квантовых систем с точно и условно 

точно решаемыми потенциалами. Данный алгоритм направлен на унифика-

цию и расширение возможностей метода факторизации и демонстрирует 

свою эффективность при построении аналитических решений решаемых мо-

делей. Ключевая идея заключается в использовании единственной потенциал-

образующей функции в виде полинома Лорана, что позволяет существенно 

упростить процедуру расчета собственных значений, параметров суперпо-

тенциала и условий на параметры потенциала в случае УТР-задач. 

Особое внимание в работе уделено тому, что структура энергетического 

спектра определяется исключительно дифференциальным уравнением, кото-

рому удовлетворяет потенциал-образующая функция. Такой подход обеспе-

чивает более глубокое понимание внутренней симметрии системы и открыва-

ет возможности для построения новых классов аналитически решаемых по-

тенциалов. 

Таким образом, цель данной работы состоит в развитии вычислитель-

ной базы метода факторизации и суперсимметричной квантовой механики, а 

также в расширении их приложений к анализу спектральных задач нетриви-

альных потенциалов в рамках уравнения Шрёдингера. 
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 Задачи, которые были поставлены в этой работе, чтобы достичь выше 

сформулированной цели: 

⎯ Ознакомление с методом факторизации и суперсимметричной кванто-

вой механикой; 

⎯ Освоение нового, унифицированного, алгоритма применения метода 

факторизации Шредингера-Инфилда-Хулла к спектральной задаче 

уравнения Шредингера для точно и условно-точно разрешимых потен-

циалов; 

⎯ Вычисление собственных значений гамильтониана с известными точно 

решаемыми потенциалами в рамках унифицированного алгоритма; 

⎯ Вычисление условий ограничения на параметры потенциала и спектра 

гамильтониана с условно-точно разрешимыми потенциалами в рамках 

унифицированного алгоритма; 

⎯ Вычисление термодинамических величин точно решаемых моделей. 

 

  



6 

 

Глава 1. Метод факторизации и суперсимметричная квантовая 

механика 

1.1 Основные положения и базовые соотношения 

Запишем гамильтониан одномерной задачи в виде: 

ℋ = −
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+

ℏ2

2𝑚𝑎2
𝛷 (
𝑥

𝑎
) , (1) 

где 𝑉(𝑥) =
ℏ2

2𝑚𝑎2
Φ(

𝑥

𝑎
) — потенциал, 𝑎  — характерный масштаб длины, 𝑚 — 

масса частицы. Для удобства расчётов представим гамильтониан (1) в безраз-

мерной форме: 

ℎ =
2𝑚𝑎2

ℏ2
ℋ = −

𝑑2

𝑑𝑢2
+Φ(𝑢), (2) 

где 𝑢 =  𝑥/𝑎 — безразмерная координата. В трёхмерном случае решение 

уравнения Шрёдингера для радиальной части волновой функции также сво-

дится к одномерной задаче с эффективным потенциалом: Φэфф(𝑢) = Φ(𝑢) +

𝑙(𝑙+1)

𝑢2
, где 𝑢 — безразмерная радиальная координата, 𝑙 =  0, 1, 2, … — азиму-

тальное квантовое число. 

Основная цель метода факторизации — нахождение двух операторов:  

𝑎+ = −
𝑑

𝑑𝑢
+φ0(𝑢),  𝑎 =

𝑑

𝑑𝑢
+φ0(𝑢), (3) 

называемых лестничными операторами. С их помощью гамильтониан (2) 

представляется в виде: 

ℎ = 𝑎+𝑎 + ε0, (4) 

Функция φ0(𝑢), называемая суперпотенциалом, удовлетворяет уравнению 

Риккати: 

(𝑎+𝑎 + ε0)ψ = (−
𝑑

𝑑𝑢
+ φ0) (

𝑑

𝑑𝑢
+ 𝜑0)ψ + ε0ψ

= (−
𝑑

𝑑𝑢
+ φ0) (

𝑑𝜓

𝑑𝑢
+ φ0ψ) + ε0ψ, 
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= φ0
2ψ + φ0

𝑑ψ

𝑑𝑢
−
𝑑φ0
𝑑𝑢

ψ − φ0
𝑑ψ

𝑑𝑢
−
𝑑2ψ

𝑑𝑢2
+ ε0ψ = (−φ0

′ + φ0
2)ψ −

𝑑2ψ

𝑑𝑢2
, (5) 

(−φ0
′ +φ0

2)ψ −
𝑑2ψ

𝑑𝑢2
= ℎψ = (−

𝑑2

𝑑𝑢2
+Φ(𝑢))ψ  

−φ0
′ (𝑢) + φ0

2(𝑢) + ε0 = Φ(𝑢). (6) 

Волновая функция основного состояния ψ0(𝑢) определяется из уравне-

ния: 

ψ0(𝑢) = 𝐴 exp (−∫φ0(𝑢)  𝑑𝑢) . (7) 

где 𝐴 — константа нормировки. В рамках суперсимметричной квантовой ме-

ханики гамильтониану ℎ (4) ставится в соответствие гамильтониан-партнер: 

ℎ̃ = −
𝑑2

𝑑𝑢2
+ Φ̃(𝑢) = 𝑎𝑎+ + ε0, (8) 

причём партнёрские потенциалы Φ(𝑢) и Φ̃(𝑢) связаны соотношением: 

Φ̃(𝑢) = Φ(𝑢) + 2φ0
′ (𝑢). (9) 

Определим два гамильтониана партнера следующими соотношениями 

ℎ1 = ℎ − ε0 = 𝑎
+𝑎, ℎ2 = ℎ̃ − ε0 = 𝑎𝑎

+. (10) 

Запишем для них уравнения Шредингера 

ℎ1𝜓𝑛
(1)
= ε𝑛

(1)
ψ𝑛
(1)
, ℎ2ψ𝑛

(2)
= 𝜀𝑛

(2)
ψ𝑛
(2)
. (11) 

Используя эти уравнения, получим следующие уравнения 

ℎ1𝑎
+ψ𝑛

(2)
= 𝑎+𝑎𝑎+ψ𝑛

(2)
= 𝑎+ℎ2ψ𝑛

(2)
= 𝜀𝑛

(2)
𝑎+ψ𝑛

(2)
, 

ℎ2𝑎ψ𝑛
(1)
= 𝑎𝑎+𝑎ψ𝑛

(1)
= 𝑎ℎ1ψ𝑛

(1)
= 𝜀𝑛

(1)
𝑎ψ𝑛

(1)
. (12) 

Из уравнений (9)-(11) следует, что собственные значения и собственные 

функции гамильтонианов h1 и h2 связаны соотношениями 

ε𝑛
(2)
= ε𝑛+1

(1)
, 
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ψ𝑛
(2)
=

1

√ε𝑛+1
(1)

𝑎ψ𝑛
(1)
, ψ𝑛+1

(1)
=

1

√ε𝑛1
(2)

𝑎+ψ𝑛
(2)
. (13)

 

На рисунке 2 представлены схематично уровни энергии гамильтонианов 

партнеров h1,2, а также показано, как, зная собственные функции гамильтони-

ана h1, определить собственные функции гамильтониана h2, используя лест-

ничные операторы.  

 

Рисунок 2. Схема уровней энергии гамильтонианов партнеров h1,2. 

Зная волновую функцию основного состояния, соответствующую га-

мильтониану h1, можно найти суперпотенциал φ0. Полученные операторы 𝑎+

и 𝑎 из уравнения (3) можно использовать для факторизации гамильтониана h1.

Также известно, что волновая функция основного состояния парного гамиль-

тониана h2 определяется из первого возбужденного состояния h1 через при-

менение оператора 𝑎 . Это позволяет провести повторную факторизацию вто-

рого гамильтониана с использованием φ0. Партнёр этой факторизации — но-

вый гамильтониан h3. Каждый следующий гамильтониан будет иметь на одно 

связанное состояние меньше, и этот процесс можно продолжать, пока не ис-

черпаются все связанные состояния. Таким образом, если задача с потенциа-

лом для h1 является точно решаемой, можно получить собственные значения 

и функции для всей иерархии гамильтонианов, созданной последовательной 

факторизацией. И наоборот, если известны волновые функции основного со-
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стояния всех гамильтонианов в иерархии, можно восстановить решение ис-

ходной задачи. Теперь конкретизируем. 

Если энергия основного состояния гамильтониана h1 равна нулю, он 

может быть представлен в виде произведения двух линейных дифференци-

альных операторов. Очевидно, если основное состояние имеет энергию 𝜀0 и 

собственную функцию ψ𝑛
(1), то с учётом уравнения (2), гамильтониан можно 

записать в виде: 

ℎ1 = 𝑎1
+𝑎1 + 𝜀0

(1)
= −

𝑑

𝑑𝑢
+ Φ1(𝑢), (14) 

где 

𝑎1 =
𝑑

𝑑𝑢
+ φ1(𝑢), 𝑎1

+ = −
𝑑

𝑑𝑢
+ φ1(𝑢),   Φ1(𝑢) = −

𝑑 ln (ψ0
(1)
)

𝑑𝑢
, (15) 

Тогда гамильтониан партнер задается формулой 

ℎ2 = 𝑎1𝑎1
+ + ε0

(1)
= −

𝑑2

𝑑𝑢2
+Φ2(𝑢), (16) 

где  

Φ2(𝑢) = φ1
2 +φ1

′ + ε0
(1)
= Φ1(𝑢) + 2𝜑1

′ = Φ1(𝑢) − 2
𝑑2

𝑑𝑢2
ln (ψ0

(1)
) , (17) 

Введем обозначение 𝜀𝑛
(𝑚)

, n обозначает энергетический уровень, а (m) отно-

сится к m-му гамильтониану hm. Собственные значения энергии и собствен-

ные функции двух гамильтонианов h1 и h2 связаны формулой 

ε𝑛+1
(1)

= ε𝑛
(2)
,  ψ𝑛

(2)
= (ε2

(1)
− ε1

(1)
)
−1/2

𝑎ψ1
(2)
, (18) 

Теперь начнем с h2, энергия основного состояния которого равна ε0
(2)
= ε1

(1)
. 

Можно аналогичным образом создать третий гамильтониан h3 в качестве га-

мильтониана партнера h2, поскольку мы можем записать h2 в виде:  

ℎ2 = 𝑎1𝑎1
+ + 𝜀0

(1)
= 𝑎2

+𝑎2 + 𝜀1
(1)
, (19) 

где 
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𝑎2 =
𝑑

𝑑𝑢
+ φ2(𝑢), 𝑎2

+ = −
𝑑

𝑑𝑢
+ φ1(𝑢),Φ2(𝑢) = −

𝑑 ln (𝜓0
(2)
)

𝑑𝑢
, (20) 

Продолжая тем же образом, получаем 

ℎ3 = 𝑎2𝑎2
+ + 𝜀1

(1)
= −

𝑑2

𝑑𝑢2
+Φ3(𝑢), (21) 

где 

Φ3(𝑢) = φ2
2 +φ2

′ + ε1
(1)
= Φ2(𝑢) − 2

𝑑2

𝑑𝑢2
ln (ψ0

(2)
)

= Φ1(𝑢) − 2
𝑑2

𝑑𝑢2
ln (ψ0

(1)
ψ0
(2)
) , (22)

 

Кроме того 

𝜀𝑛
(3)
= 𝜀𝑛+1

(2)
= 𝜀𝑛+2

(1)

ψ𝑛
(3)
= (𝜀𝑛+1

(2)
− 𝜀0

(2)
)
−1 2⁄

𝑎2ψ𝑛+1
(2)

=

(𝜀𝑛+1
(1)

− 𝜀1
(1)
)
−1 2⁄

(𝜀𝑛+1
(1)

− 𝜀0
(1)
)
−1 2⁄

𝑎2𝑎1ψ𝑛+2
(1)
,

(23) 

таким образом, ясно, что если исходный гамильтониан h0 имеет p (≥ 1) свя-

занных состояний с собственными значениями 𝜀𝑛
(1)

 и собственными функци-

ями ψ𝑛
(1)
 0 ≤ 𝑛 ≤ (𝑝 − 1), тогда всегда можно выстроить иерархию (𝑝 − 1) 

гамильтонианов ℎ2, . . . , ℎ𝑝 такую, что m-й член иерархии гамильтонианов 

(ℎ𝑚) имеет тот же спектр собственных значений, что и ℎ1, за исключением 

того, что первые (𝑚 −  1) собственные значения ℎ1 отсутствуют в ℎ𝑚.В 

частности, мы всегда можем записать (𝑚 = 1,2, . . . , 𝑝 ) : 

ℎ𝑚 = 𝑎𝑚
+ 𝑎𝑚 + 𝜀𝑚−1 = −

𝑑2

𝑑𝑢2
+Φ𝑚(𝑢), (24) 

где 

𝑎𝑚 =
𝑑

𝑑𝑢
+ Φ𝑚(𝑢),Φ𝑚(𝑢) = −

𝑑 ln (ψ0
(𝑚)
)

𝑑𝑢
, (25) 

𝜀𝑛
(𝑚)

= 𝜀𝑛+1
(𝑚−1)

= ⋯ = 𝜀𝑛+𝑚−1
(1)

, 
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ψ𝑛
(𝑚)

= (𝜀𝑚+𝑛−1
(1)

− 𝜀𝑚−2
(1)

)
−1 2⁄

⋯(𝜀𝑚+𝑛−1
(1)

− 𝜀0
(1)
)
−1 2⁄

𝑎𝑚−1
⋯𝑎1ψ𝑛+𝑚−1

(1)
, 

Φ𝑚(𝑢) = Φ1(𝑢) − 2
𝑑2

𝑑𝑢2
ln (ψ0

(1)
⋯ψ0

(𝑚−1)
) . (26) 

Метод факторизации порождает иерархию гамильтонианов    ℎ𝑛 = −
𝑑2

𝑑𝑢2
+

Φ𝑛(𝑢) (𝑛 = 0,1,2, … , ℎ0 = ℎ), которые факторизуются и удовлетворяют усло-

вию [2,4]:   

ℎ𝑛+1 = 𝑎𝑛+1
+ 𝑎𝑛+1 + 𝜀𝑛+1 = 𝑎𝑛𝑎𝑛

+ + 𝜀𝑛,  𝑛 = 0,1,2,… (27) 

где:   

𝑎𝑛
± = ∓

𝑑

𝑑𝑢
+ φ𝑛(𝑢). (28) 

Подстановка (28) в (27) даёт рекуррентное уравнение:   

−(φ𝑛+1
′ + φ𝑛

′ ) + φ𝑛+1
2 −φ𝑛

2 + 𝜀𝑛+1 − 𝜀𝑛 = 0,  𝑛 = 0,1,2,… (29) 

 

1.2 Инвариантность формы 

Если потенциал Φ(𝑢) зависит от набора параметров 𝒘 = {𝑤0, 𝑤1, … }, 

то, согласно концепции форм-инвариантности Генденштейна [29], партнёр-

ский потенциал Φ̃(𝑢) имеет схожую координатную зависимость, но с другим 

набором параметров. Предполагая связь между партнёрскими потенциалами 

[29]: 

Φ̃(𝑢, 𝒘) = Φ(𝑢, 𝑔(𝒘)) + 𝑅(𝑔(𝒘)), (30) 

где 𝑔 — преобразование вектора параметров 𝐰, а 𝑅(𝑔(𝒘)) не зависит от 𝑢, 

полный энергетический спектр может быть найден аналитически. Пусть 

ψ0(𝑢, 𝒘) — волновая функция основного состояния гамильтониана ℎ(𝒘) с 

собственным значением ε0 = 𝐿(𝒘), и 𝑎ψ0(𝑢, 𝑤) = 0. Тогда энергии и волно-

вые функции возбуждённых состояний определяются как [33]: 

𝜀𝑛 = 𝜀0 +∑𝑅(𝑔𝑘(𝑤))

𝑛

𝑘=1

, (31) 
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ψ𝑛 = 𝑎
+(𝑤)⋯𝑎+(𝑔𝑛−1(𝑤))ψ0(𝑢, 𝑔

𝑛(𝑤)), (32) 

где:   

𝑅 (𝑔𝑘(𝑤)) = 𝐿 (𝑔𝑘(𝑤)) − 𝐿 (𝑔𝑘−1(𝑤)) > 0,  𝑔𝑘(𝑤) = 𝑔 (𝑔(⋯𝑔(𝑤)))⏟          
𝑘 раз

.
(33) 

Основная сложность применения суперсимметричной квантовой меха-

ники заключается в отсутствии универсального метода построения функции 

преобразования 𝑔 для параметров потенциала и соответствующего суперпо-

тенциала. Как правило, для точно решаемых потенциалов функция 𝑔 имеет 

вид: 𝑔(𝑤) = 𝑤 ± κ или 𝑔(𝑤) = 𝑞𝑤, где κ и 𝑞 — константы.   

 

1.3 Унификация метода факторизации 

Анализ известных точно решаемых потенциалов (см. таблицы 1, 2) по-

казывает, что их можно представить в унифицированной форме:   

Φ(𝑢) = 𝑤−2𝑓
−2(𝑢) + 𝑤−1𝑓

−1(𝑢) + 𝑤0 +𝑤1𝑓(𝑢) + 𝑤2𝑓
2(𝑢), (34) 

где 𝑓(𝑢) — потенциал-образующая функция, удовлетворяющая уравнению:   

𝑓′(𝑢) = κ0 + κ1𝑓(𝑢) + κ2𝑓
2(𝑢). (35) 

Суперпотенциал основного состояния φ0(𝑢) записывается в виде:   

φ0 = 𝛼0𝑓 + β0 + γ0𝑓
−1,

α0, β0, γ0  −  константы
(36) 

а для возбуждённых состояний предлагается анзац:   

φ𝑛 = α𝑛𝑓 + β𝑛 + γ𝑛𝑓
−1,  𝑛 ≥ 1. (37) 

Подстановка (36) и (37) в уравнения (6) и (29) позволяет вычислить па-

раметры суперпотенциалов и условия на коэффициенты потенциала.   
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Потенциал (u) 

Одномерный гармонический осцил-

лятор 

𝑉(𝑥) =
𝑚ω2𝑥2

2
,  𝑎 = √

ℏ

𝑚ω
 

u2 

Потенциал Морзе 

𝑉(𝑥) =
ℏ
2
λ
2

2𝑚𝑎2
(𝑒−

2𝑥
𝑎 − 2𝑒−

𝑥
𝑎) 

λ
2(𝑒−2𝑢 − 2𝑒−𝑢) 

Потенциал Хюльтена 

𝑉(𝑥) = −
ℏ
2

2𝑚𝑎2
λ

𝑒
𝑥
𝑎 − 1

 
−

λ

𝑒𝑢 − 1
 

Потенциал Розена-Морзе 

𝑉(𝑥) =
ℏ
2

2𝑚𝑎2
(
𝜇(𝜇 − 1)

sin2( 𝑥/𝑎)
− 2𝑏 𝑐𝑜𝑡( 𝑥/𝑎)) 

𝜇(𝜇 − 1)

sin2 𝑢
− 2𝑏 cot( 𝑢) 

Потенциал Эккарта 

𝑉(𝑥) =
ℏ
2

2𝑚𝑎2
(
𝜇(𝜇 − 1)

sinh2( 𝑥/𝑎)
− 2𝑏 coth( 𝑥/𝑎)) 

μ(μ− 1)

sinh2 𝑢
− 2𝑏 coth( 𝑢) 

Потенциал Пёшля-Теллера (I) 

𝑉(𝑥) =
ℏ
2

2𝑚𝑎2
(

μ(μ− 1)

sin2( 𝑥/𝑎)
+

λ(λ− 1)

cos2( 𝑥/𝑎)
) 

μ(μ− 1)

sin2 𝑢
+

λ(λ− 1)

cos2 𝑢
 

Потенциал Пёшля-Теллера (II) 

𝑉(𝑥) =
ℏ
2

2𝑚𝑎2
(
𝜇(𝜇 − 1)

sinh2( 𝑥/𝑎)
−

𝜆(𝜆 − 1)

cosh2( 𝑥/𝑎)
) 

𝜇(𝜇 − 1)

sinh2 𝑢
−
𝜆(𝜆 − 1)

cosh2 𝑢
 

Потенциал Пёшля-Теллера (III) 

𝑉(𝑥) =
ℏ
2

2𝑚𝑎2
λ − μ cosh( 𝑥/𝑎)

sinh2( 𝑥/𝑎)
 

λ− μ cosh( 𝑢)

sinh2( 𝑢)
 

Потенциал Денга-Фана 

𝑉(𝑥) =
ℏ
2𝜆

2𝑚𝑎2
(1 −

𝑏

𝑒
𝑥
𝑎 − 1

)

2

 
𝜆 (1 −

𝑏

𝑒𝑢 − 1
)
2

 

Гиперболический молекулярный по-

тенциал 

𝑉(𝑥) =
ℏ
2
λ

2𝑚𝑎2
(1 − 𝑏 coth( 𝑥/𝑎))2 

𝜆(1 − 𝑏 coth( 𝑢))2 
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Таблица 1. Примеры потенциалов, для которых известны точные решения 

Трехмерный гармонический осцил-

лятор 

𝑉(𝑟) =
ℏ
2

2𝑚
⋅
𝑙(𝑙 + 1)

𝑟2
+
𝑚ω2𝑟2

2
,  𝑎 = √

ℏ

𝑚𝜔
 

𝑢2 +
𝑙(𝑙 + 1)

𝑢2
 

Водородоподобный потенциал 

𝑉(𝑟) =
ℏ
2

2𝑚
⋅
𝑙(𝑙 + 1)

𝑟2
−
𝑍𝑒2

4𝜋𝜀0𝑟
,  𝑎 =

4𝜋𝜀0ℏ
2

𝑍𝑚𝑒2
 

𝑙(𝑙 + 1)

𝑢2
−
2

𝑢
 

Потенциал Мэннинга-Розена 

𝑉(𝑟) =
ℏ
2

2𝑚𝑎2
(

μ(μ− 1)𝑒−
2𝑟
𝑎

(1 − 𝑒−
𝑟
𝑎)2

−
𝑏𝑒−

𝑟
𝑎

1 − 𝑒−
𝑟
𝑎

+
𝑎2𝑙(𝑙 + 1)

𝑟2
) ≈ 

≈
ℏ
2

2𝑚𝑎2
(

μ(μ− 1)𝑒−
2𝑟
𝑎

(1 − 𝑒−
𝑟
𝑎)2

−
𝑏𝑒−

𝑟
𝑎

1 − 𝑒−
𝑟
𝑎

+
𝑙(𝑙 + 1)𝑒−

𝑟
𝑎

(1 − 𝑒−
𝑟
𝑎)2

) 

μ(μ− 1) + 𝑙(𝑙 + 1)

(𝑒𝑢 − 1)2
−
(𝑏 − 𝑙(𝑙 + 1))

𝑒𝑢 − 1
 

Модифицированный потенциал 

Юкавы 

𝑉(𝑟) = −
ℏ
2
λ

2𝑚𝑎

𝑒−
𝑟
𝑎

𝑟
+

ℏ
2

2𝑚

𝑙(𝑙 + 1)

𝑟2
≈ 

≈ −
ℏ
2𝜆

2𝑚𝑎2
𝑒−

𝑟
𝑎

1 − 𝑒−
𝑟
𝑎

+
ℏ
2

2𝑚𝑎2
𝑙(𝑙 + 1)𝑒−

𝑟
𝑎

(1 − 𝑒−
𝑟
𝑎)2

 

−
𝑙(𝑙 + 1)

(𝑒𝑢 − 1)2
−
𝑙(𝑙 + 1) + λ

𝑒𝑢 − 1
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Таблица 2. Значения коэффициентов wi (i=-2,-1,0,1,2) и i (i=0,1,2) для потенциалов из таблицы 1 

Потенциал f(u) 0 1 2 w-2 w-1 w0 w1 w2 

Одномерный гармониче-

ский осциллятор 
u 1 0 0 0 0 0 0 1 

Потенциал Морзе 𝑒−𝑢 0 -1 0 0 0 0 -22 2 

Потенциал Хюльтена −
1

𝑒𝑢 − 1
 0 -1 1 0 0 0  0 

Потенциал Розена-Морзе c𝑡𝑔 𝑢 -1 0 -1 0 0 (-1) -2b (-1) 

Потенциал Эккарта coth 𝑢 1 0 -1 0 0 - (-1) -2b (-1) 

Потенциал Пёшля-

Теллера (I) 
t𝑔 𝑢 1 0 1 μ(μ − 1) 0 

μ(μ − 1) + 

+λ(λ − 1) 
0 λ(λ − 1) 

Потенциал Пёшля-

Теллера (II) 
tanh 𝑢 1 0 -1 μ(μ − 1) 0 −μ(μ − 1) − λ(λ − 1) 0 λ(λ − 1) 

Потенциал Пёшля-

Теллера (III) 
tanh (

𝑢

2
) 1/2 0 -1/2 

λ − μ

4
 0 -1/2 0 

λ + μ

4
 

Потенциал Денга-Фана −
1

𝑒𝑢 − 1
 0 -1 1 0 0  2b b2 

Гиперболический моле-

кулярный потенциал 
coth 𝑢 1 0 -1 0 0  -2b b2 

Трехмерный гармониче-

ский осциллятор 
u 1 0 0 l(l+1) 0 0 0 1 

Водородоподобный по-

тенциал 

1

𝑢
 0 0 -1 0 0 0 -2 l(l+1) 

Потенциал Мэннинга-

Розена 
−

1

𝑒𝑢 − 1
 0 -1 1 0 0 0 𝑏 − 𝑙(𝑙 + 1) μ(μ − 1) + 𝑙(𝑙 + 1) 

Модифицированный 

потенциал Юкавы 
−

1

𝑒𝑢 − 1
 0 -1 1 0 0 0 λ− 𝑙(𝑙 + 1) 𝑙(𝑙 + 1) 
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Учитывая уравнения (34), (35) и приравнивая коэффициенты при оди-

наковых степенях функции 𝑓(𝑢), можно получить следующую систему раз-

ностных уравнений для определения коэффициентов α𝑛, β𝑛, γ𝑛 и собственных 

значений ε𝑛:   

𝑛 = 0 

𝑓2: −α0κ1 + α0
2 = 𝑤2, 

𝑓:−α0κ1 + 2α0β0 = 𝑤1 

𝑓−1: 𝛾0𝜅1 + 2𝛽0𝛾0 = 𝑤−1, (38) 

𝑓−2: γ0κ0 + γ0
2 = 𝑤−2, 

𝑓0: ε0 = 𝑤0 + α0κ0 − β0
2 − γ0(κ2 + 2α0). 

𝑛 ≥ 1 

𝑓2:  −(α𝑛+1 + α𝑛)κ1 + α𝑛+1
2 − α𝑛

2 = 0, 

𝑓:  −(α𝑛+1 + α𝑛)κ1 + 2(α𝑛+1β𝑛+1 − α𝑛β𝑛) = 0, 

𝑓−1:  (𝛾𝑛+1 + 𝛾𝑛)𝜅1 + 2(𝛽𝑛+1𝛾𝑛+1 − 𝛽𝑛𝛾𝑛) = 0, (39) 

𝑓−2:  (γ𝑛+1 + γ𝑛)κ0 + γ𝑛+1
2 − γ𝑛

2 = 0, 

ε𝑛+1:  ε𝑛 + (α𝑛+1 + α𝑛)κ0 − (β𝑛+1
2 − β𝑛

2) − (γ𝑛+1 + γ𝑛)κ2

− 2(α𝑛+1γ𝑛+1 − α𝑛γ𝑛). 

Из систем (38)-(39) видно, что число уравнений превышает число неиз-

вестных параметров α𝑛, β𝑛, γ𝑛. В общем случае это накладывает дополни-

тельные условия на коэффициенты потенциала. Однако для точно решаемых 

потенциалов (примеры приведены в Таблице 1) избыточные уравнения отсут-

ствуют.
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Глава 2. Применение унифицированного метода факторизации 

к точно решаемым моделям 

2.1 Факторизация типа А 

Исходя из того, какие коэффициенты будут равными нулю, потенциалы 

можно разделить на два класса, факторизуемых разными способами. Для 

первого класса значения параметров равны:   

𝑤−2 = 0,𝑤−1 = 0, γ𝑛 = 0 (𝑛 = 0,1,2,… ). 

При этих условиях система уравнений (38), (39) упрощается:   

𝑛 = 0: 

−α0κ2 + α0
2 = 𝑤2, 

−𝛼0𝜅1 + 2𝛼0𝛽0 = 𝑤1, (40) 

ε0 = 𝑤0 + α0κ0 − β0
2. 

𝑛 ≥ 1: 

−(α𝑛+1 + α𝑛)κ2 + α𝑛+1
2 − α𝑛

2 = 0, 

−(𝛼𝑛+1 + 𝛼𝑛)𝜅1 + 2(𝛼𝑛+1𝛽𝑛+1 − 𝛼𝑛𝛽𝑛) = 0, (41) 

ε𝑛+1 = ε𝑛 + (α𝑛+1 + α𝑛)κ0 − (β𝑛+1
2 − β𝑛

2). 

Решение системы (40) позволяет определить коэффициенты α0, β0 и 

энергию основного состояния ε0. Для возбуждённых состояний (𝑛 ≥ 1) ре-

куррентные соотношения (41) дают последовательность параметров α𝑛, β𝑛 и 

энергий ε𝑛.   

𝛼0
± =

𝜅2
2
± √

𝜅2
2

4
+ 𝑤2,  𝛼𝑛 = 𝛼0 + 𝜅2𝑛,  
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𝛽𝑛 =

{
 
 

 
 𝜅1 (𝑛 +

𝛼0
𝜅2
)

2
+
1

2𝜅2
(𝑤1 −

𝜅1
𝜅2
𝑤2) (𝑛 + 𝛼0/𝜅2)

−1,  𝜅2 ≠ 0,

1

2
(
𝑤1
𝛼0
+ 𝜅1) + 𝜅1𝑛,  𝜅2 = 0,

 

𝜀𝑛 =

{
 
 
 

 
 
 (𝑤0 −

𝜅1
2𝜅2

𝑤1 +
𝜅1
2 − 2𝜅0𝜅2

2𝜅2
2 𝑤2) +

(𝜅0𝜅2 −
𝜅1
2

4
) (𝑛 +

𝛼0
𝜅2
)
2

−
(𝑤1 − 𝜅1𝑤2/𝜅2)

2

4𝜅2
2 (𝑛 +

𝛼0
𝜅2
)
−2

, 𝜅2 ≠ 0, 

𝑤0 + 𝛼0𝜅0(2𝑛 + 1) − (𝜅1𝑛 +
1

2
(
𝑤1
𝛼0
+ 𝜅1))

2

,  𝜅2 = 0.

(42) 

 

Таким образом, предложенный алгоритм унифицирует расчёт спектра 

для широкого класса потенциалов, сводя задачу к решению систем линейных 

уравнений. Это значительно упрощает анализ условий разрешимости и по-

строение точных решений.   

В качестве примера проведем вычисления для потенциала Хюльтена:  

(𝑢) = −
λ

𝑒𝑢 − 1
, 𝑓(𝑢) = −

1

𝑒𝑢 − 1
, (43) 

Запишем выражение суперпотенциала  

φ𝑛 = α𝑛
1

𝑒𝑢 − 1
+ β𝑛, (44) 

Найдем производную суперпотенциала для возбужденных состояний 

φ𝑛
′ = −𝛼𝑛

𝑒𝑢

(𝑒𝑢 − 1)2
= α𝑛(−𝑓(𝑢) − 𝑓(𝑢)

2), (45) 

Возведем суперпотенциал в квадрат 

φ𝑛
2 = 𝛼𝑛

2𝑓(𝑢)2 + β𝑛
2 + 2𝛼𝑛β𝑛𝑓(𝑢). (46) 

Подставим полученные выражения в уравнение Рикатти (6) для основного 

состояния 

𝑛 = 0: 
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𝛼0𝑓(𝑢) + 𝛼0𝑓(𝑢)
2 + 𝛼0

2𝑓(𝑢)2 + β0
2 + 2𝛼0β0𝑓(𝑢) + 𝜀0 = −λ. (47) 

Составим систему уравнений, приравняв коэффициенты при одинаковых 

степенях 𝑓(𝑢) 

𝑓2: 𝛼0 + 𝛼0
2 = 0,

𝑓1: 𝛼0 + 2𝛼0β0 + λ = 0,

𝑓0: β0
2 + 𝜀0 = 0.

(48) 

Решаем полученную систему и получаем 

𝛼0(𝛼0 + 1) = 0 ,
𝛼0 = 0; 𝛼0 = −1,
−1 − 2β0 + λ = 0

β0 =
1

2
(λ − 1),

, (49) 

𝜀0 = −
1

4
(λ − 1)2. 

Подставим полученные выше выражения (44-46) в уравнение для возбужден-

ных состояний (29) 

−(𝛼𝑛(−𝑓 − 𝑓
2) + 𝛼𝑛+1(−𝑓 − 𝑓

2)) + 𝛼𝑛+1
2 𝑓2 +

+β𝑛+1
2 + 2𝛼𝑛+1β𝑛+1𝑓 − 𝛼𝑛

2𝑓2 − 𝛽𝑛
2 − 2𝛼𝑛β𝑛𝑓 + 𝜀𝑛+1 − 𝜀𝑛 = 0. (50)

 

Снова, приравниваем коэффициенты при равных степенях функции f(u) 

𝑓2: 𝛼𝑛 + 𝛼𝑛+1 + 𝛼𝑛+1
2 − 𝛼𝑛

2 = 0,

𝑓1: 𝛼𝑛 + 𝛼𝑛+1 + 2𝛼𝑛+1𝛽𝑛+1 − 2𝛼𝑛𝛽𝑛 = 0,

𝑓0: 𝛽𝑛+1
2 − 𝛽𝑛

2 + 𝜀𝑛+1 − 𝜀𝑛 = 0.

(51) 

Решаем полученную систему (51)  

(αn + αn+1) + (αn+1 + αn)(αn+1 − αn) = 0, (52) 

(αn + αn+1)(−1 + αn+1 − αn) = 0, (53) 

αn+1 = αn + 1, (54) 

решая разностное уравнение, получим 

𝛼n = −(n + 1), (55) 

(αn + αn+1) + 2αn+1βn+1 − 2αnβn = 0,

αn + αn+1 = −(2n + 3),
(56) 
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используя замену δ𝑛 = 𝛼𝑛𝛽𝑛 

αn+1βn+1 = αnβn + (n +
3

2
) ,

δn+1 = δn + n +
3

2
,

(57) 

𝛿𝑛
0 = 0, δn

′ = An2 + Bn + C, (58) 

A(n + 1)2 + B(n + 1) + C = An2 + Bn + c + n +
3

2
,

A(2n + 1) + B = n +
3

2
,

(59) 

n: 2A = 1; n0: A + B =
3

2
, (60) 

A =
1

2
; B = 1, (61) 

δn = C +
n2

2
+ n,

δ0 = α0β0 =
1 − λ

2
,

(62) 

δn =
1

2
−
λ

2
+
n2

2
+ n = αnβn,

δn =
(n + 1)2

2
−
λ

2
,

(63) 

βn = −
(n + 1)

2
+

λ

2(n + 1)
, (64) 

𝜀𝑛+1 = 𝜀𝑛 + 𝛽𝑛
2 − 𝛽𝑛+1

2 , (65) 

𝜀𝑛 = −
1

4
(𝑛 + 1 −

𝜆

𝑛 + 1
)
2

. (66) 

 

2.2 Факторизация типа Б 

Для второго класса значения параметров равны:   

𝑤1 = 0,  𝑤−1 = 0,  𝜅1 = 0,  𝛽𝑛 = 0 (𝑛 = 0,1,2, … ). 

Это приводит к следующей системе уравнений: 
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𝑛 = 0: 
−𝛼0𝜅2 + 𝛼0

2 = 𝑤2, 
𝛾0𝜅0 + 𝛾0

2 = 𝑤−2, 
𝜀0 = 𝑤0 + 𝛼0𝜅0 − 𝛾0(𝜅2 + 2𝛼0), 

 
𝑛 ≥ 1: (67) 

−(𝛼𝑛+1 + 𝛼𝑛)𝜅2 + 𝛼𝑛+1
2 − 𝛼𝑛

2 = 0, 
(𝛾𝑛+1 + 𝛾𝑛)𝜅0 + 𝛾𝑛+1

2 − 𝛾𝑛
2 = 0, 

𝜀𝑛+1 = 𝜀𝑛 + (𝛼𝑛+1 + 𝛼𝑛)𝜅0 − (𝛾𝑛+1 + 𝛾𝑛)𝜅2 − 2(𝛼𝑛+1𝛾𝑛+1 − 𝛼𝑛𝛾𝑛). 

Решение системы уравнений (53) имеет вид: 

𝛼0
± =

𝜅2
2
± √

𝜅2
2

4
+ 𝑤2,  𝛼𝑛 = 𝛼0 + 𝜅2𝑛,  

𝛾0 = −
𝜅0
2
± √

𝜅0
2

4
+ 𝑤−2,  𝛾𝑛 = 𝛾0 − 𝜅0𝑛, (68) 

𝜀𝑛 = {
(𝑤0 −

𝜅0
𝜅2
𝑤2 −

𝜅2
𝜅0
𝑤−2) + 4𝜅0𝜅2 (𝑛 +

𝛼0𝜅0 − 𝛾0𝜅2
2𝜅0𝜅2

)
2

,  𝜅2 ≠ 0,

𝑤0 − 2𝛼0𝛾0 + 𝛼0𝜅0(4𝑛 + 1),  𝜅2 = 0.

 

Рассчитаем энергетический спектр потенциала Пёшля-Теллера (I), ис-

пользуя общее решение (53) 

Φ(𝑢) =
𝜇(𝜇 − 1)

sin2 𝑢
+
𝜆(𝜆 − 1)

cos2 𝑢
(69) 

𝜅0 = 1; 𝜅1 = 0; 𝜅2 = 1

𝑤−2 = μ(μ − 1);𝑤−1 = 0;𝑤0 = μ(μ − 1) + λ(λ − 1);𝑤1 = 0;𝑤2 = λ(λ − 1)
 

(70) 

Подставим коэффициенты (56) и получим 

φ𝑛 = (𝑛 + λ) tg(𝑢) −
𝜇 + 𝑛

tg(𝑢)
(71) 

𝜀𝑛 = (𝜇(𝜇 − 1) + 𝜆(𝜆 − 1) − 𝜆(𝜆 − 1) − 𝜇(𝜇 − 1)) + 4 (𝑛 +
𝜆 + 𝜇

2
)
2

𝜀𝑛 = 4(𝑛 +
𝜇 + 𝜆

2
)
2

= (2𝑛 + 𝜆 + 𝜇)2
(72) 
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В таблице 3 представлены результаты вычислений по формулам (40)-

(42) и (67)-(68) суперпотенциала φ𝑛(𝑢) и спектра энергии для потенциалов, 

представленных в таблице 1, соответствующих двум типам факторизации. Из 

таблицы 3 видно, что собственные значения, рассчитанные с помощью при-

веденной схемы, воспроизводят известные результаты. 

 

Тип A (2=0) 

Потенциал n(u) n 

Одномерный 

гармониче-

ский осцилля-

тор 

u 2n+1 

Потенциал 

Морзе 
−𝜆𝑒−𝑢 − (𝑛 +

1

2
− 𝜆) 

−(λ −
1

2
− 𝑛)

2

, 

𝑛 = 0,1, … , [𝜆 −
1

2
] 

Тип A (20) 

Потенциал 

Хюльтена 
−
𝑛 + 1

𝑒𝑢 − 1
+
1

2
(

λ

𝑛 + 1
− (𝑛 + 1)) −

1

4
(

λ

𝑛 + 1
− (𝑛 + 1))

2

 

Потенциал 

Розена-Морзе 
−(𝑛 + 𝜇) cot 𝑢 +

𝑏

𝑛 + 𝜇
 (𝑛 + 𝜇)2 −

𝑏2

(𝑛 + 𝜇)2
 

Потенциал 

Эккарта 
−(𝑛 + 𝜇) coth𝑢 +

𝑏

𝑛 + 𝜇
 −(𝑛 + 𝜇)2 −

𝑏2

(𝑛 + 𝜇)2
 

Потенциал 

Денга-Фана 

−
𝑛 + 𝛼0
𝑒𝑢 − 1

−
1

2
(𝑛 + 𝛼0 −

𝑏(𝑏 + 2)𝜆

𝑛 + 𝛼0
) , 

𝛼0 =
1

2
+ √

1

4
+ 𝜆𝑏2 

𝜆 −
1

4
(
𝜆𝑏(𝑏 + 2)

𝑛 + 𝛼0

− (𝑛 + 𝛼0))

2

 

Гиперболиче-

ский молеку-

лярный по-

тенциал 

−(𝑛 + 𝛼0) coth 𝑢 +
𝑏λ

𝑛 + 𝛼0
, 

𝛼0 =
1

2
+ √

1

4
+ 𝜆𝑏2 

𝜆(1 + 𝑏2) − (𝑛 + 𝛼0)
2

−
𝑏2𝜆2

(𝑛 + 𝛼0)2
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Водородопо-

добный по-

тенциал 

−
𝑛 + 𝑙 + 1

𝑢
+

1

𝑛 + 𝑙 + 1
 −

1

(𝑛 + 𝑙 + 1)2
 

 

Потенциал 

Мэннинга-

Розена 

 

−
𝑛 + 𝛼0
𝑒𝑢 − 1

−
1

2
(𝑛 + 𝛼0 −

𝑏 + 𝜇(𝜇 − 1)

𝑛 + 𝛼0
) , 

𝛼0 =
1

2
+ √

1

4
+ 𝜇(𝜇 − 1) + 𝑙(𝑙 + 1)

 

 

−
1

4
(𝑛 + 𝛼0

−
𝑏 + 𝜇(𝜇 − 1)

(𝑛 + 𝛼0)
)

2

 

Модифициро-

ванный по-

тенциал Юка-

вы 

−
𝑛 + 𝑙 + 1

𝑒𝑢 − 1
−
1

2
(𝑛 + 𝑙 + 1 −

𝜆

𝑛 + 𝑙 + 1
)

 

−
1

4
((𝑛 + 𝑙 + 1)

−
𝜆

(𝑛 + 𝑙 + 1)
)

2

 

Тип B (2=0)

 Трехмерный 

гармониче-

ский осцилля-

тор 

𝑢 −
𝑛 + 𝑙 + 1

𝑢

 

4n+2l+3 

Тип B (20)

 Потенциал 

Пёшля-

Теллера (I) 

(𝑛 + 𝜆) 𝑡𝑎𝑛 𝑢 −
𝑛 + 𝜇

𝑡𝑎𝑛 𝑢
 

(2𝑛 + 𝜇 + 𝜆)2

 

Потенциал 

Пёшля-

Теллера (II) 

−(𝑛 + 1 − 𝜆) 𝑡𝑎𝑛ℎ 𝑢 −
𝑛 + 1 − 𝜇

𝑡𝑎𝑛ℎ 𝑢  

−(𝜇 + 𝜆 − 2 − 2𝑛)2, 

𝑛 = 0,1, … , [
𝜇 + 𝜆

2
− 1]

 

Потенциал 

Пёшля-

Теллера (III) 

−
1

2
(𝑛 +

1

2
− √

1

4
+ 𝜆 + 𝜇) 𝑡𝑎𝑛ℎ (

𝑢

2
) + 

−
1

2

𝑛 +
1
2 −

√1
4 + 𝜆 − 𝜇

𝑡𝑎𝑛ℎ (
𝑢
2)

 

−
1

4
(𝑛0 − 1 − 2𝑛)

2, 

𝑛0 = √
1

4
+ 𝜆 + 𝜇

+ √
1

4
+ 𝜆 − 𝜇, 

𝑛 = 0,1,2, … , [
𝑛0 − 1

2
] 

Таблица 3. Результаты расчётов суперпотенциалов n(u) и энергетического спектра 

для потенциалов, представленных в Таблице 1. 
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Таким образом, приведенная ниже схема вычисления суперпотенциалов и 

собственных значений гамильтониана позволяет унифицировать и алгорит-

мизировать метод факторизации. На рисунке 3 показана блок-схема алгорит-

ма применения метода факторизации для расчета энергетического спектра в 

соответствии с предложенной схемой расчета. 

 

Рисунок 3. Блок-схема алгоритма расчета энергетического спектра точно разрешимого потен-

циала с использованием унифицированного метода факторизации 
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Глава 3. Применение унифицированного метода факторизации 

к условно точно-решаемым моделям 

 

В предыдущем разделе мы представили унифицированную схему для 

вычисления энергетического спектра с использованием метода факторизации 

для точно решаемых потенциалов. В этом разделе мы обобщаем предложен-

ный алгоритм метода факторизации для вычисления энергетического спектра 

гамильтонианов с условно точно решаемыми потенциалами. 

 

3.1 Собственные значения и условия ограничения 

Простейший случай для условно точно решаемого потенциала возника-

ет в потенциале (34), когда 𝑤±1, 𝜅1 ≠ 0. В этом случае в системе уравнений 

(38)-(39) есть одно избыточное уравнение, которое накладывает условие на 

параметры потенциала. Первое и четвертое уравнения в системах (38) и (39) 

независимо определяют коэффициенты n и n: 

𝛼𝑛 = 𝛼0 + 𝜅2𝑛,  𝛾𝑛 = 𝛾0 − 𝜅0𝑛,  

𝛼0
± =

𝜅2
2
± √

𝜅2
2

4
+ 𝑤2,  𝛾0 = −

𝜅0
2
± √

𝜅0
2

4
+ 𝑤−2. (73) 

Второе и третье уравнения дают два различных выражения для коэф-

фициентов n 

𝛽𝑛 =

{
 
 

 
 𝜅1(𝑛 + 𝛼0/𝜅2)

2
+
1

2𝜅2
(𝑤1 −

𝜅1
𝜅2
𝑤2) (𝑛 + 𝛼0/𝜅2)

−1,  𝜅2 ≠ 0,

1

2
(
𝑤1
𝛼0
+ 𝜅1) + 𝜅1𝑛,  𝜅2 = 0

(74) 

𝛽𝑛 =

{
 
 

 
 −

𝜅1(𝑛 − 𝛾0/𝜅0)

2
−
1

2𝜅0
(𝑤−1 −

𝜅1
𝜅0
𝑤−2) (𝑛 − 𝛾0/𝜅0)

−1,  𝜅0 ≠ 0,

1

2
(
𝑤−1
𝛾0

− 𝜅1) − 𝜅1𝑛,  𝜅0 = 0

(75) 
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Приравнивая правые части уравнений (74) и (75) и выбирая коэффици-

ент 𝑤1 как зависимый параметр, мы получаем следующее ограничивающее 

условие: 

𝑤1 =

{
 
 
 
 

 
 
 
 
𝜅1
𝜅2
𝑤2 + (𝜅2𝑛 + 𝛼0) {𝜅1 (

𝛾0
𝜅0
−
𝛼0
𝜅2
− 2𝑛) −

𝑤−1 − 𝑤−2𝜅1/𝜅0
(𝜅0𝑛 − 𝛾0)

} ,  𝜅0,2 ≠ 0,

𝛼0𝜅1 (
𝛾0
𝜅0
− 3𝑛 − 1) −

𝑤−1 − 𝑤−2𝜅1/𝜅0
(𝜅0𝑛 − 𝛾0)

,  𝜅2 = 0, 𝜅0 ≠ 0,

𝜅1
𝜅2
𝑤2 + (𝜅2𝑛 + 𝛼0) {

𝑤−1
𝛾0

− 𝜅1 (3𝑛 + 1 +
𝛼0
𝜅2
)} ,  𝜅2 ≠ 0, 𝜅0 = 0,

𝛼0 (
𝑤−1
𝛾0

− 2𝜅1(2𝑛 + 1)) ,  𝜅0,2 = 0.

(76) 

 Энергетический спектр определяется из последнего уравнения системы 

уравнений (41) и равен: 

𝜀𝑛 =

{
 
 

 
 𝜀0 +

(𝑤−1−𝑤−2𝜅1/𝜅0)
2

4𝛾0
2 + (4𝛼0𝜅0 +

𝛾0𝜅1
2

2𝜅0
− 4𝛾0𝜅2) 𝑛 −

1

4
(𝜅1
2 − 16𝜅0𝜅2)𝑛

2 −
(𝑤−1−𝑤−2𝜅1/𝜅0)

2

4(𝜅0𝑛−𝛾0)
2

,  𝜅0 ≠ 0,

𝜀0 + (2𝜅0𝛼0 − 𝜅1
2 −

𝜅1𝑤−1

𝛾0
− 2𝛾0𝜅2) 𝑛 − (𝜅1

2 − 𝜅0𝜅2)𝑛
2,  𝜅0 = 0.

(77)  

 

В качестве демонстрации, для предложенной выше схемы для вычисления 

спектра условно точно-решаемого потенциала, рассмотрим смешанный потенци-

ал Кулона и гармонического осциллятора в трех измерениях: 

𝛷(𝑢) = 𝑢2 + 𝜆𝑢 −
𝜇

𝑢
+
𝑙(𝑙 + 1)

𝑢2
(78) 

Для этого потенциала, согласно описанному выше алгоритму, мы имеем: 

𝑓(𝑢) = 𝑢,  𝜅0 = 1,  𝜅1 = 0,  𝜅2 = 0,  𝑤−2 = 𝑙(𝑙 + 1),  𝑤−1 = −𝜇,  

𝑤0 = 0,  𝑤1 = 𝜆,  𝑤2 = 1 (79) 

Тогда, согласно формулам, представленным выше, мы получаем: 

𝛼𝑛 = 1, 𝛾𝑛 = −(𝑛 + 𝑙 + 1), 𝛽𝑛 =
𝜇

2(𝑛 + 𝑙 + 1)
, 
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𝜀𝑛 = 4𝑛 + 2𝑙 + 3 −
𝜇2

4(𝑛 + 𝑙 + 1)2
, (80) 

условие ограничения:  𝜆 =
𝜇

𝑛 + 𝑙 + 1
 

Результаты для спектра и ограничивающего условия на параметр α совпадают 

с результатами [32], полученными методом суперсимметричной квантовой меха-

ники и подтвержденными численным решением уравнения Шрёдингера. Этот 

результат указывает на согласованность предложенного алгоритма для примене-

ния метода факторизации к условно точно решаемым потенциалам. 

 

3.2 Обобщение унифицированного метода факторизации на случай по-

тенциала в виде полинома Лорана 

Представленная унифицированная схема метода факторизации позволяет нам 

рассматривать более сложные потенциалы, например, представленные в виде 

полинома типа Лорана: 

𝛷(𝑢) = ∑ 𝑤𝑘𝑓
𝑘(𝑢)

2𝑁

𝑘=−2𝑁

(81) 

где f(u) является простейшей потенциальной производящей функцией, которая 

удовлетворяет уравнению (34). Для потенциала (81) анзац для суперпотенциала 

имеет вид: 

𝜑𝑛(𝑢) = ∑ 𝛼𝑛𝑘𝑓
𝑘(𝑢)

𝑁

𝑘=−𝑁

(82) 

Применяя представленный выше алгоритм, мы получаем следующую систему 

уравнений для определения коэффициентов суперпотенциала и энергетического 

спектра: 

𝑛 = 0: 

−(𝑘 + 1)𝜅0𝛼0,𝑘+1(1 − 𝛿𝑘,𝑁 − 𝛿𝑘,𝑁+1) − 𝑘𝜅1𝛼0,𝑘(1 − 𝛿𝑘,−𝑁−1 − 𝛿𝑘,𝑁+1) − 
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−(𝑘 − 1)𝜅2𝛼0,𝑘−1(1 − 𝛿𝑘,−𝑁−1 − 𝛿𝑘,−𝑁) + ∑ 𝛼0𝑚𝛼0,𝑘−𝑚

min(𝑁,𝑁+𝑘)

𝑚=−min(𝑁,𝑁−𝑘)

= 𝑤𝑘 , 

|𝑘| ≤ 𝑁 + 1,  𝑘 ≠ 0, 

∑ 𝛼0𝑚𝛼0,𝑘−𝑚

min(𝑁,𝑁+𝑘)

𝑚=−min(𝑁,𝑁−𝑘)

= 𝑤𝑘 ,  |𝑘| > 𝑁 + 1, 

𝜀0 = 𝑤0 + 𝜅0𝛼0,1 − 𝜅2𝛼0,−1 − ∑ 𝛼0,𝑚𝛼0,−𝑚

𝑁

𝑚=−𝑁

, (83𝑎) 

𝑛 ≥ 1: (83𝑏) 

−(𝑘 + 1)𝜅0(𝛼𝑛,𝑘+1 + 𝛼𝑛+1,𝑘+1)(1 − 𝛿𝑘,𝑁 − 𝛿𝑘,𝑁+1) − 𝑘𝜅1(𝛼𝑛,𝑘 + 𝛼𝑛+1,𝑘)(1

− 𝛿𝑘,−𝑁−1 − 𝛿𝑘,𝑁+1) − (𝑘 − 1)𝜅2(𝛼𝑛,𝑘−1 + 𝛼𝑛+1,𝑘−1)(1 − 𝛿𝑘,−𝑁−1

− 𝛿𝑘,−𝑁) + ∑ (𝛼𝑛+1,𝑚𝛼𝑛+1,𝑘−𝑚

min(𝑁,𝑘+𝑁)

𝑚=−min(𝑁,𝑁−𝑘)

− 𝛼𝑛,𝑚𝛼𝑛,𝑘−𝑚) = 0,  

|𝑘| ≤ 𝑁 + 1,  𝑘 ≠ 0, 

∑ (𝛼𝑛+1,𝑚𝛼𝑛+1,𝑘−𝑚

min(𝑁,𝑘+𝑁)

𝑚=−min(𝑁,𝑁−𝑘)

− 𝛼𝑛,𝑚𝛼𝑛,𝑘−𝑚) = 0,  |𝑘| > 𝑁 + 1, 

𝜀𝑛+1 = 𝜀𝑛 + 𝜅0(𝛼𝑛,1 + 𝛼𝑛+1,1) − 𝜅2(𝛼𝑛,−1 + 𝛼𝑛+1,−1) − ∑ (𝛼𝑛+1,𝑚𝛼𝑛+1,−𝑚

𝑁

𝑚=−𝑁

− 𝛼𝑛,𝑚𝛼𝑛,−𝑚). 

Система уравнений для коэффициентов суперпотенциала основного состоя-

ния (69a) в общем случае не имеет точного аналитического решения. Однако 

система уравнений для возбужденных состояний частично допускает точное 

аналитическое решение. 

𝛼𝑛,−1 = 𝛼0,−1 −𝑁𝜅0𝑛,  𝛼𝑛,1 = 𝛼0,1 +𝑁𝜅2𝑛, 
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𝛼𝑛,0 =

{
  
 

  
 

(𝑁 + 2)𝜅0𝛼0,2
𝑁𝜅2

+
𝜅1
2𝑁𝜅2

(𝑁𝜅2𝑛 + 𝛼0,1) +

𝛼0,1(𝑁𝜅2𝛼0,0 − 𝜅1𝛼0,1/2 − (𝑁 + 2)𝜅0𝛼0,2)

𝑁𝜅2(𝑁𝜅2𝑛 + 𝛼0,1)
 𝜅2 ≠ 0,

𝛼0,0 + (𝜅1 +
(𝑁 + 2)𝜅0𝛼0,2

𝛼0,1
)𝑛,  𝜅2 = 0,

 

𝛼𝑛,𝑚 = 𝛼0,𝑚,  |𝑚| > 1. (84) 

С учетом (84) уравнение для энергий возбужденных состояний принимает 

вид 

𝜀𝑛+1 = 𝜀𝑛 + 𝜅0(𝛼𝑛,1 + 𝛼𝑛+1,1) − 𝜅2(𝛼𝑛,−1 + 𝛼𝑛+1,−1) − (𝛼𝑛+1,0
2 − 𝛼𝑛,0

2 ) − 

−2(𝛼𝑛+1,−1𝛼𝑛+1,1 − 𝛼𝑛,−1𝛼𝑛,1). (85) 

Это уравнение, после подстановки решений (84), допускает решение 

𝜀𝑛 = 𝜀0 + (𝜅0 (
𝑁(𝜅0 + 𝜅2)

2
+ (2𝑁 + 1)𝛼0,1 + 𝛼0,−1) − 2(𝑁 + 1)𝜅2𝛼0,−1)𝑛 + 

+𝑁𝜅0 (−
𝜅0
2
+ 𝜅2 (2𝑁 +

3

2
))𝑛2 + 𝛼0,0

2 − 𝛼𝑛,0
2 . (86) 

Как следует из уравнения (86), спектр совпадает по форме со спектром (63). 

Это означает, что форма спектра инвариантна к порядку полинома Лорана, 

написанного относительно функции f(u), и, по-видимому, определяется только 

дифференциальным уравнением, которому эта функция удовлетворяет. 

Рассмотрим в качестве демонстрации сингулярный ангармонический потен-

циал вида: 

Φ(𝑢) = 𝑢2 +
𝑙(𝑙 + 1)

𝑢2
+
𝜆

𝑢4
+
𝜇

𝑢6
(87) 

Точное решение этого потенциала в рамках метода анзаца для волновой 

функции было рассмотрено в [34, 35, 36] и в рамках суперсимметричной кванто-

вой механики с анзацем для суперпотенциала в [30]. Для этого потенциала мы 

имеем: 

𝑓(𝑢) = 𝑢, 𝜅0 = 1, 𝜅1 = 0, 𝜅2 = 0,  𝑁 = 3, 𝑤−6 = 𝜇, 𝑤−4 = 𝜆, 𝑤−2 = 𝑙(𝑙 + 1),  
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𝑤2 = 1, 𝑤−5 = 𝑤−3 = 𝑤−1 = 𝑤0 = 𝑤1 = 𝑤3 = 𝑤4 = 𝑤5 = 𝑤6 = 0, (88) 

Вставляя (88) в систему уравнений (83а), мы получаем для основного состоя-

ния систему: 

𝑛 = 0:  
𝑘 = −6:  𝛼0,−3

2 = 𝜇,  
𝑘 = −5:  2𝛼0,−3𝛼0,−2 = 0,  

𝑘 = −4:  3𝛼0,−3 + 𝛼0,−2
2 + 2𝛼0,−3𝛼0,−1 = 𝜆,  

𝑘 = −3:  2𝛼0,−2 + 2𝛼0,−2𝛼0,−1 + 2𝛼0,−3𝛼0,0 = 0,  
𝑘 = −2:  𝛼0,−1 + 𝛼0,−1

2 + 2𝛼0,−2𝛼0,0 + 2𝛼0,−3𝛼0,1 = 𝑙(𝑙 + 1),  
𝑘 = −1:  2𝛼0,−1𝛼0,0 + 2𝛼0,−2𝛼0,1 + 2𝛼0,−3𝛼0,2 = 0,  

𝑘 = 1:  2𝛼0,0𝛼0,1 − 2𝛼0,−2 + 2𝛼0,−1𝛼0,2 + 2𝛼0,−2𝛼0,3 = 0,  
𝑘 = 2:  𝛼0,1

2 + 2𝛼0,0𝛼0,2 − 3𝛼0,3 + 2𝛼0,−1𝛼0,3 = 1,  
𝑘 = 3:  2𝛼0,1𝛼0,2 + 2𝛼0,0𝛼0,3 = 0,  
𝑘 = 4:  𝛼0,2

2 + 2𝛼0,1𝛼0,3 = 0,  
𝑘 = 5:  2𝛼0,2𝛼0,3 = 0,  
𝑘 = 6:  𝛼0,3

2 = 0, (89) 

𝜀0 = 𝛼01 − ∑ 𝛼0,𝑚𝛼0,−𝑚

3

𝑚=−3

.  

Решение полученной системы уравнений (89) имеет вид: 

𝛼0,−3 = −√𝜇, 𝛼0,−2 = 0, 𝛼0,−1 = −(
3

2
+

λ

2√𝜇
) , 𝛼0,0 = 0, 𝛼0,1 = 1, 𝛼0,2 = 0, 

 𝛼0,3 = 0, 𝜀0 =
λ

√𝜇
+ 4, (90) 

условие ограничения:  (2√𝜇 + 𝜆)2 = 4𝜇𝑙(𝑙 + 1) + 𝜇(1 + 8√𝜇). 

Как следует из (90), соответствующий суперпотенциал основного состояния 

для потенциала (84) имеет вид: 

φ
0
(𝑢) = −

√𝜇

𝑢3
−

3 +
𝜆

√𝜇

2𝑢
+ 𝑢

(91) 

Для возбужденных состояний мы выбираем суперпотенциал в виде следующе-

го анзаца: 

φ
n
(𝑢) =

𝛼𝑛,−3
𝑢3

+
𝛼𝑛,−1
𝑢

+ 𝛼𝑛,1𝑢 (92) 
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Подставим (92), (88) в систему уравнений (83б) и, в результате, для выбранно-

го потенциала получим следующую систему уравнений для определения па-

раметров суперпотенциала и энергии возбужденных состояний: 

𝑘 = −6:𝛼𝑛+1,−3
2 − 𝛼𝑛,−3

2 = 0, 

𝑘 = −4: 3(𝛼𝑛+1,−3 + 𝛼𝑛,−3) + 2(𝛼𝑛+1,−3𝛼𝑛+1,−1 − 𝛼𝑛,−3𝛼𝑛,−1) = 0, 

𝑘 = −2: 𝛼𝑛+1,−1
2 − 𝛼𝑛,−1

2 + 𝛼𝑛+1,−1 + 𝛼𝑛,−1 + 2(𝛼𝑛+1,−3𝛼𝑛+1,1 − 𝛼𝑛,−3𝛼𝑛,1) = 0,(93) 
𝑘 = 2:𝛼𝑛+1,1

2 − 𝛼𝑛,1
2 = 0, 

𝑘 = 0: 𝜀𝑛+1 = 𝜀𝑛 + 𝛼𝑛+1,1 + 𝛼𝑛,1 − 2(𝛼𝑛+1,1𝛼𝑛+1,−1 − 𝛼𝑛,1𝛼𝑛,−1). 

Решением системы (93) имеет вид: 

𝛼𝑛,1 = 1,  𝛼𝑛,−3 = −√𝜇,  𝛼𝑛,−1 = −(
3

2
+

λ

2√𝜇
) − 3𝑛, 

𝜀𝑛 = 𝜀0 + 8𝑛 = 4(2𝑛 + 1) +
𝜆

√𝜇
, (94) 

условие ограничения:  (2√𝜇 + 𝜆)2 + 8𝑛(3𝜇(𝑛 + 1) + 𝜆√𝜇)

= 4𝜇𝑙(𝑙 + 1) + 𝜇(1 + 8√𝜇) 

В работе [30], используя анзатц суперпотенциала и метод суперсимметричной 

квантовой механики, были получены решения только для основного и первого 

возбужденных состояний. В рамках предложенной выше схемы мы получили 

решения для произвольного состояния, воспроизводящие частные случаи, 

найденные в [30]. Таким образом, на примере сингулярного ангармонического 

потенциала была продемонстрирована непротиворечивость предложенного ал-

горитма для потенциалов, имеющих вид многочлена типа Лорана произволь-

ного порядка. 
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Глава 4. Термодинамика точно решаемых моделей 

4.1 Расчет общих выражений для термодинамических величин точно 

решаемых моделей 

Используя результаты предыдущих глав, можно получить общую фор-

му энергетического спектра точно решаемых моделей 

𝐸𝑛 =
ℏ2𝛼2

2𝑚
{𝐴 − 𝐵(𝑛 + 𝑞1)

2 −
𝐶

(𝑛 + 𝑞2)
2
} ,  𝑛 = 0,1,2,… , 𝑛𝑚, (95) 

где параметры α, A, B, C, 𝑞₁,₂ и 𝑛𝑚 не зависят от n и являются функциями па-

раметров потенциала и, возможно, орбитального квантового числа. Параметр 

𝑛𝑚 может стремиться к бесконечности. Общая форма спектра, конечно, как 

упоминалось выше, записывается только для случая, когда потенциал-

генерирующие функции удовлетворяют дифференциальному уравнению. 

Существование точного спектра в замкнутой форме позволяет точно изучать 

термодинамические свойства систем, которые описываются модельными по-

тенциалами, допускающими точное рассмотрение. 

Отправной точкой для изучения термодинамики системы является вы-

числение статистической суммы. Подставляя выражение в уравнение, мы по-

лучаем следующее выражение для статистической суммы. 

𝑍(𝛽) = ∑𝑒−β𝐸𝑛

𝑛𝑚

𝑛=0

,  β =
1

𝑇
(96) 

Здесь температура T измеряется в энергетических единицах. Подставляя вы-

ражение (95) в уравнение (96), мы получаем следующее выражение для ста-

тистической суммы 

𝑍(β) = ∑𝑒𝑥𝑝(−
βℏ2𝛼2

2𝑚
{𝐴 − 𝐵(𝑛 + 𝑞1)

2 −
𝐶

(𝑛 + 𝑞2)
2
})

𝑛𝑚

𝑛=0

(97) 

Заменяя суммирование интегрированием, мы получаем 
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𝑍(𝛽) ≈ ∫ 𝑒𝑥𝑝 (−
𝛽ℏ2𝛼2

2𝑚
{𝐴 − 𝐵(𝑛 + 𝑞1)

2 −
𝐶

(𝑛 + 𝑞2)
2
}) 𝑑𝑛

𝑛𝑚

0

(98) 

В замкнутой форме интеграл может быть вычислен только в специаль-

ном случае q₁ = q₂ = q, 

𝑍(β) = 𝑒−βξ1
√π

4ξ2√β
{𝐷𝑛𝑚+𝑞

+ (β) + 𝐷𝑛𝑚+𝑞
− (β) − 𝐷𝑞

+(β) − 𝐷𝑞
−(β)} 

𝐷𝑛
±(𝛽) = 𝑒±2𝛽𝜉2𝜉3erf [(𝜉2𝑛 ±

𝜉3
𝑛
)√𝛽] (99) 

ξ1 =
𝐴ℏ2α2

2𝑚
,  ξ2 =

ℏα√−𝐵

√2𝑚
,  ξ3 =

ℏα√−𝐶

√2𝑚
 

 где erf[z] - функция ошибок. 

erf (𝑧) =
2

√𝜋
∫𝑒−𝑡

2
𝑑𝑡

𝑧

0

(100) 

Для облегчения дальнейших вычислений предполагаем, что 𝑛ₘ ≫ 𝑞; тогда, 

учитывая асимптотическое поведение функции ошибок для больших значе-

ний аргумента, erf(z) ≈ 1 −
exp(−𝑧2)

𝑧√π
, упрощаем выражение для статистиче-

ской суммы.  

𝑍(𝛽) = 𝑒−βξ1
√π

4ξ2√β

{
 
 

 
 −

𝑒−ξ2
2𝑛𝑚
2 β

√𝜋𝛽ξ2𝑛𝑚
+ 𝑒2βξ2ξ3erfc [(ξ2𝑞 +

ξ3
𝑞
)√β]

+𝑒−2βξ2ξ3erfc [(ξ2𝑞 −
ξ3
𝑞
)√β]

}
 
 

 
 

(101) 

Здесь erfc(z)  =  1 −  erf(z). Используя статистическую сумму, можно 

определить термодинамические функции, такие как средняя энергия U(β) и 

теплоемкость C(β). 
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𝑈(𝛽) =
𝜕

𝜕𝛽
𝑙𝑛 𝑍 (β) = 𝜉1 −

1

2β

+

1

√πβ
(ξ2𝑛𝑚 +

1
2βξ2𝑛𝑚

) 𝑒−𝜉2
2𝑛𝑚

2 𝛽 −
2𝜉2𝑞

√𝜋𝛽
𝑒−(ξ2

2𝑞2+𝜉3
2𝑞−2)𝛽 + 2ξ2ξ3𝑄−(𝛽)

−
𝑒−ξ2

2𝑛𝑚
2 𝛽

√πβξ2𝑛𝑚
+ 𝑄+(𝛽)

, (102)
 

𝑄±(β) = 𝑒2βξ2ξ3Erfc[(ξ2𝑞 + ξ3𝑞)√β] ± 𝑒
−2βξ2ξ3Erfc[(ξ2𝑞 − ξ3𝑞)√β] 

𝐶(β) = −β2
∂

∂β
𝑈(β) = −

𝑘𝐵
2
+

𝑘𝐵𝛽
2 (

1

√𝜋𝛽
(𝜉2𝑛𝑚 +

1
2𝛽𝜉2𝑛𝑚

) 𝑒−𝜉2
2𝑛𝑚
2 𝛽 −

2𝜉2𝑞

√𝜋𝛽
𝑒−(𝜉2

2𝑞2+𝜉3
2𝑞−2)𝛽 + 2𝜉2𝜉3𝑄−(𝛽))

(−
𝑒−𝜉2

2𝑛𝑚
2 𝛽

√𝜋𝛽𝜉2𝑛𝑚
+ 𝑄+(𝛽))

2  

−𝑘𝐵𝛽
2

−
1

√𝜋𝛽3
(𝜉2𝑛𝑚 +

3
4𝛽𝜉2𝑛𝑚

+ 𝛽(𝜉2𝑛𝑚)
3) 𝑒−𝜉2

2𝑛𝑚
2 𝛽 + 2𝜉2𝜉3 (

2𝜉2𝑞

√𝜋𝛽
𝑒−(𝜉2

2𝑞2+𝜉3
2𝑞−2)𝛽 + 2𝜉2𝜉3𝑄−(𝛽))

−
𝑒−𝜉2

2𝑛𝑚
2 𝛽

√𝜋𝛽𝜉2𝑛𝑚
+ 𝑄+(𝛽)

(103)
 

Таким образом, возможность определения точного спектра модельных 

систем позволяет описывать их термодинамические свойства с хорошей точ-

ностью. 

Потенциал 𝜉1 𝜉2 𝜉3 

Потенциал 

Морзе 
0 𝑖

ℏ𝛼

√2𝑚
 0 

Потенциал 

Хюльтена 

𝜆ℏ2𝛼2

4𝑚
 𝑖

ℏ𝛼

2√2𝑚
 𝑖

𝜆ℏ𝛼

2√2𝑚
 

Потенциал 

Розена-Морзе 

𝜆ℏ2𝛼2

4𝑚
 𝑖

ℏ𝛼

2√2𝑚
 𝑖

𝜆ℏ𝛼

2√2𝑚
 

Потенциал 

Эккарта 
0 𝑖

ℏ𝛼

√2𝑚
 𝑖

ℏ𝛼𝑏

√2𝑚
 

Потенциал 

Денга-Фана 

𝜆ℏ2𝛼2

2𝑚
(𝜆 +

1

2
𝜆𝑏(𝑏 + 2)) 𝑖

ℏ𝛼

2√2𝑚
 𝑖

ℏ𝛼

2√2𝑚
(𝜆𝑏(𝑏 + 2)) 

Гиперболиче-

ский молеку-

𝜆ℏ2𝛼2

2𝑚
𝜆(𝑏2 + 1) 𝑖

ℏ𝛼

√2𝑚
 𝑖

𝜆𝑏ℏ𝛼

√2𝑚
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лярный по-

тенциал 

Водородопо-

добный по-

тенциал 

0 0 𝑖
ℏ𝛼

√2𝑚
 

Потенциал 

Мэннинга-

Розена 

ℏ2𝛼2

4𝑚
(𝑏 + 𝜇(𝜇 − 1)) 𝑖

ℏ𝛼

2√2𝑚
 𝑖

ℏ𝛼

2√2𝑚
(𝑏 + 𝜇(𝜇 − 1)) 

Модифициро-

ванный по-

тенциал Юка-

вы 

𝜆ℏ2𝛼2

4𝑚
 𝑖

ℏ𝛼

2√2𝑚
 𝑖

𝜆ℏ𝛼

2√2𝑚
 

Таблица 4. Значения  𝜉𝑖(𝑖 = 1,2,3) точно решаемых потенциалов 

 

4.2 Температурные зависимости внутренней энергии и теплоемкости 

некоторых точно решаемых моделей 

В качестве примеров мы рассмотрим такие потенциалы как модифици-

рованный потенциал Юкавы, Морзе и Эккарта. 

Потенциал Юкавы в трех измерениях приводим к виду 

𝑉(𝑟) = −
ℏ2𝑍

2𝑚𝑎

𝑒−𝑟/𝑎

𝑟
+
ℏ2

2𝑚

𝑙(𝑙 + 1)

𝑟2
≈ −

ℏ2

2𝑚𝑎2
𝑍𝑒−𝑟/𝑎

1 − 𝑒−𝑟/𝑎
+

ℏ2

2𝑚𝑎2
𝑙(𝑙 + 1)𝑒−𝑟/𝑎

(1 − 𝑒−𝑟/𝑎)2
 

(104) 

Спектр потенциала Юкавы (104) имеет вид 

𝐸𝑛𝑙 = −
𝐸0
4
((𝑛 + 𝑙 + 1) −

𝑍

(𝑛 + 𝑙 + 1)
)

2

, (105) 

где 𝐸0 =
ℏ2

2𝑚𝑎2
.  Для данного спектра 𝑛𝑚 = [√𝑧 − 𝑙 − 1]. На рисунке 4 приве-

дены температурные зависимости внутренней энергии и теплоемкости для 

различных значений параметра Z. 
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Рисунок 4. Температурные зависимости внутренней энергии U и теплоемкости C для потен-

циала Юкавы при различных значениях параметра Z. 

Потенциал Эккарта  

V(𝑥) =
ℏ2

2ma2
(
μ(μ − 1)

sinh2( x/a)
− 2b coth( x/a)) , (106) 

Спектр потенциала Эккарта (106) имеет вид  

𝐸n = 𝐸0(−(n + μ)
2 −

b2

(n + μ)2
),   𝑛𝑚 = √𝑏 − μ, (107) 

Где 𝐸0 =
ℏ2

2𝑚𝑎2
.  Для данного спектра 𝑛𝑚 = √𝑏 − μ. 

  

Рисунок 5. Температурные зависимости внутренней энергии U и теплоемкости C 

для потенциала Эккарта при различных значениях параметра b и 𝜇 = 0. 
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Потенциал Морзе 

𝑉(𝑥) =
ℏ2λ2

2𝑚𝑎2
(𝑒−2𝑥/𝑎 − 2𝑒−𝑥/𝑎), (108) 

 

Спектр потенциала Морзе (108) имеет вид  

𝐸𝑛 = −(λ −
1

2
− 𝑛)

2

, (109) 

где 𝐸0 =
ℏ2

2𝑚𝑎2
.  Для данного спектра 𝑛𝑚 = λ −

1

2
. 

  

Рисунок 6. Температурные зависимости внутренней энергии U и теплоемкости C 

для потенциала Морзе при различных значениях параметра λ. 
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ЗАКЛЮЧЕНИЕ 
 

Данная выпускная квалификационная работа была посвящена освое-

нию и применению нового унифицированного алгоритма метода факториза-

ции получения точных и условно точных решений уравнения Шредингера. 

Основные результаты и выводы можно представить следующим образом : 

1. Освоен новый алгоритм применения метода факторизации Шредингера-

Инфилда-Хулла к задаче вычисления спектра точно и условно точно разрешимых 

потенциалов. Новый алгоритм позволяет унифицировать и расширить возможности 

метода факторизации для построения точно решаемых потенциалов; 

2. В рамках унифицированного подхода вычислены собственные значения точ-

но решаемых потенциалов, построенных с помощью одной функции в виде много-

члена типа Лорана. Показано, что унифицированный алгоритм эффективно воспро-

изводит известные точные решения; 

3. Используя общее выражение для спектра точно-решаемых моделей, 

рассчитаны общие выражения для их термодинамических величин. 

4. Показано, что форма спектра определяется только дифференциальным урав-

нением, которому удовлетворяет производящая функция потенциала и имеет для 

точно-решаемых моделей достаточно общий вид. 

5. Алгоритм позволяет существенно упростить схему расчета спектра, парамет-

ров суперпотенциала, а также условия ограничения на параметры потенциала в слу-

чае условно точно решаемых потенциалов; 
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