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Введение 

 

Ключевыми свойствами функциональных магнитных материалов 

являются большая магнитная анизотропия и коэрцитивная сила. Этими 

свойствами обладают соединения редкоземельных элементов. Поэтому для 

изготовления мощных постоянных магнитов используют соединения 

редкоземельных металлов. Например, SmCo5 или Nd2Fe14B. Однако создание 

данных соединений связано с большими финансовыми затратами, поэтому 

вопрос о нахождении альтернативы материалов стоит довольно остро. 

Среди имеющихся в литературе работ, связанных с Li3N:Fe, не было 

таких, в которых рассматривалась бы данная система с микроскопической 

точки зрения, в частности, с использованием теории кристаллического поля.  

Поэтому была поставлена следующая цель настоящей работы: теоретическое 

исследование спектральных и магнитных характеристик Li3N:Fe. Для 

достижения этой цели решались следующие задачи: 

1) Получить спектры ионов Fe
1+

 и Fe
2+

 в гексагональном кристаллическом 

поле, 

2) Рассчитаны параметры КП в модели точечных зарядов, 

3) Учесть вклады в параметры КП, связанные с эффектами перекрывания, 

4) Рассчитать спектры ионов железа в магнитном поле, получить зависимость 

намагниченности от магнитного поля. 

Следует также отметить некоторые особенности изучаемого нами 

соединения. Во-первых, кристаллические поля, формируемые ионами N
3-

 в 

качестве лигандов переходного иона в неорганических соединениях ранее не 

изучались. В предыдущих работах, связанных с Li3N:Fe [3], были проведены 

квантово-химические расчеты, в данной работе мы рассмотрели соединение 
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Li3N:Fe, используя теорию кристаллического поля, что позволило 

непосредственно выполнить анализ влияния лигандов N
3-

. Также в данной 

системе присутствуют линейные цепочки N – Fe – N вдоль 

кристаллографической оси c (рис. 4), которые определяют магнитные 

свойства рассматриваемых кристаллов при больших концентрациях ионов 

железа, в то время как взаимодействия между цепочками существенно 

слабее, в результате цепочку N – Fe – N можно рассматривать как 

одномерную.  

В данной работе использовано приближение кристаллического поля 

(КП). При использовании этого метода основной проблемой является 

определение параметров КП, которые следует вводить с учетом 

экспериментальных данных. Экспериментальных данных по спектру 

возбуждений кристаллов Li3N:Fe нет, но известны вышеперечисленные 

характеристики: магнитный момент и высота энергетического барьера, 

которые позволяют подобрать параметры КП. Мы также обсуждаем 

физические обоснования при оценках величин этих параметров.  
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Глава 1. Спектр иона железа в Li3N:Fe1+ 

1.1 Обзор литературы 

В работе [1] был обнаружен большой магнитный момент на ионах Fe
1+

 

с электронной оболочкой 3d
7
 в соединении Li3-xFexN, а именно 5 B  на один 

ион железа при   x = 0.16 в магнитном поле H = 70 кЭ при температурах 

T < 200 K. Эта величина гораздо выше спинового магнитного момента 

MS = B3 , соответствующего основному терму 
4
F (S = 3/2) ионов Fe

1+
, хотя в 

большинстве случаев магнитное поведение 3d-металлических соединений 

определяется спиновой составляющей полного углового момента открытой 

d-оболочки. 

В опубликованной позже работе [2] была измерена намагниченность 

Li3-xFexN в свипируемом магнитном поле (рис. 1). В магнитных полях, 

приложенных вдоль оси симметрии c кристалла, с напряженностью H = 1 T 

намагниченность постоянна (начиная с состояния, полученного охлаждением 

образца при включенном поле) и соответствует моменту насыщения 

c

нас B5  . Напротив, в перпендикулярном поле (Hc) намагниченность мала 

и слабо возрастает с ростом поля. Наблюдались скачки намагниченности 

вблизи точки Н = 0 при низких температурах, свидетельствующие о весьма 

длительных временах релаксации. 
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Рис. 1. Петля гистерезиса при T = 2 K и x = 0.0032 в кристалле Li3-xFexN . 

На другом графике (рис. 2) видно, что с изменением температуры 

меняется и поведение кривых гистерезиса. А именно, при более низких 

температурах наблюдается ступенчатый характер изменения 

намагниченности. С повышением температуры до 16 K петли гистерезиса 

практически пропадают. 

 

Рис. 2. Петли гистерезиса при различных температурах. 
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В той же работе [2] была получена температурная зависимость времен 

релаксации (рис. 3) и найдена высота барьера B/ 430Kk  , определяющего 

скорость релаксации. При температуре T = 16 K релаксация происходит 

относительно быстро – через 500 секунд после выключения поля 

намагниченность равна нулю. Однако при более низких температурах даже 

через 4000 секунд намагниченность отлична от нуля. 

 

Рис. 3. Времена релаксации при различных температурах. 
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1.2 Структура кристаллической решетки, электронная конфигурация 

Fe
1+

 и волновые функции свободного иона  

В физике твердого тела для изучения реальных кристаллов 

используется модель кристаллической решетки. Она представляет собой 

бесконечную трехмерную структуру, которая состоит из узлов. В узлах 

находятся атомы или ионы. Кристаллическая решетка обладает свойством 

периодичности, т.е. смещение на вектор 

mnk m n k  R a b c ,        (1.1) 

где m, n, k – произвольные целые числа, a, b, c – базисные векторы, приводит 

к совмещению решетки с собой. 

Для описания положения всех узлов решетки (т.е. описания самой 

решетки) пользуются понятием элементарной ячейки. Элементарная ячейка – 

это параллелепипед, построенный на векторах a, b, c. Положение любого 

узла есть: 

(0)

i i mnk r r R ,              (1.2) 

где 
(0)

ir  - положение i-го узла в элементарной ячейке. Для описания всей 

кристаллической решетки достаточно ввести положения узлов в 

элементарной ячейке и задать базисные векторы a, b, c.  

В кристалле Li3N:Fe базисные векторы имеют следующий вид: 

(1,0,0)aa , ( 1/ 2, 3 / 2,0)a b , (0,0,1)сc  

a = 364.8 пм 

b = 387.5 пм 
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Таблица 1. Координаты ионов в элементарной ячейке 

Ион x, a y, a z, c 

Li1 2/3 1/3 0 

Li2 1/3 2/3 0 

Li3 0 0 1/2 

N 0 0 0 

 

Рассматриваемое в данной работе соединение Li2(Li1-xFex)N состоит из 

чередующихся плоскостей Li2N и Li1-xFex, которые перпендикулярны 

гексагональной оси c (см. рис. 4). Ионы железа прочно связаны с двумя 

ионами азота, расположенными в цепи параллельно оси c. В то же время 

связь ионов железа с ионами лития в плоскости Li1-xFex слаба и зависит от 

относительного числа ближайших соседей Li и Fe в плоскости. 

 

 

 

Рис. 4. Фрагмент кристаллической структуры Li3N:Fe [3].  
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Внешняя электронная оболочка иона железа Fe
1+

 - 3d
7
. Полное число  

состояний равно 
7

10

10!
120

7!(10 7)!
C  


. Соответствующие матрицы 

операторов, фигурирующих в гамильтониане иона Fe
1+

, построены на 

волновых функциях, которые представляют собой слэтеровские 

детерминанты. Детерминанты составлены из одноэлектронных волновых 

функций 

32 32 2( ) ( ) ( , ) ( )m mR r Y    r .    (1.3а) 

Запишем (1.3а), используя дираковские обозначения: 

3, 2, 2,...2, 1/ 2n l m       ,   (1.3б) 

где 32 ( )R r  - радиальная часть волновой функции, 2 ( , )mY    - угловая часть 

волновой функции, которая представляет собой сферическую функцию,

( )   - спиновая часть волновой функции,   - проекция спина на ось z. 

1.3  Гамильтониан электрон-электронного взаимодействия 

      Энергия электростатического взаимодействия между электронами может 

быть записана в виде 

2
2 *

ee

0

1
H 4 ( , ) ( , )

(2 1)

k
k

kq i i kq j j

i j i j k q ki j

re
e Y Y

r k r
    




     

 
     

  
  

r r
.(1.4) 

Орбитальный момент электронов l = 2. При вычислении матричных 

элементов Hee будут возникать интегралы вида: 2 2 'm kq md Y Y Y . Они 

выражаются через 3j-символы следующим образом: 

 

       1 1 2 2 3 3

1 2 31 2 31 2 3

1 2 3

(2 1)(2 1)(2 1)

4 0 0 0
l m l m l m

l l ll l ll l l
d Y Y Y

m m m

    
    

  
 .(1.5) 
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Система симметрична относительно операции инверсии (    ,

    ), что приводит к условию на k в (1.4): 

( 1) 1k  .      (1.6) 

Отсюда следует, что k – четное. Т.к. орбитальный момент электронов на 3d-

оболочке равен 2, k может принимать только значения 0, 2, 4. k = 0 

соответствует сдвигу всего спектра, как целого, остается ненулевой вклад от 

k = 2, 4.  

В итоге матрица Hee будет выражаться через матрицы 2f  и 4f , которые 

соответствуют значениям k = 2 и k = 4, соответственно. Hee принимает вид: 

ee 2 2 4 4H f fF F    ,     (1.7) 

F2 и F4 выражаются через интегралы от радиальных функций R32 и 
1

p

r

r r



 

 
 
 

 

(p = 2 соответствует F2, p = 4 соответствует F4). В настоящей работе F2 и F4 – 

подгоночные параметры. Значения F2 = 68467 см
-1

, F4 = 47918 см
-1

 были 

получены из сравнения значений энергий термов с энергиями, данными в [4]. 

Вычисленные энергии термов иона  Fe
1+ 

равны: 

Таблица 2. Термы иона Fe
1+ 

Терм E, см
-1 

Кратность 

вырождения 

Терм E, см
-1

 Кратность 

вырождения 

4
F 0 28 

2
H 13367 22 

4
P 8967 12 

2
D1 14776 10 

2
G 10378 18 

2
F 22333 14 

2
P 13367 6 

2
D2 35757 10 

 

 



12 

 

1.4 Расчет уровней энергии в кристаллическом поле с учетом спин-

орбитального взаимодействия 

Полный гамильтониан иона равен H = HCF + HSO + Hee. Гамильтониан 

взаимодействия с кристаллическим полем имеет вид: 

CF

,

H ( ')k k

q q

k q

B C  r ,     (1.8) 

где 
k

qB  – параметры кристаллического поля, 
k

qC  – сферические тензоры. 

Сферические тензоры выражаются через сферические функции: 

4
( , ) ( , )

2 1

k

q kqC Y
k


    


.                 (1.9) 

Гамильтониан иона в кристаллическом поле так же, как и 

гамильтониан электрон-электронного взаимодействия, не содержит 

спиновых переменных, поэтому матрица HCF диагональна относительно 

спиновых волновых функций. 

Орбитальный момент электронов равный 2 допускает значения 4k  . 

k = 0 соответствует сдвигу спектра, как целого. Требование инвариантности 

относительно инверсии оставляет только четные значения k, поэтому 

ненулевой вклад дают параметры k = 2, k = 4.  

         Кристалл Li3N:Fe симметричен относительно поворота на угол / 3  

вокруг оси c (рис. 4), это преобразование не меняет энергию HCF. Известно, 

что ( , ) iq

kqY e   , тогда требование инвариантности сферических функций 

при повороте на  / 3  позволяет получить условие на возможные значения q: 

)
3 3 1

iq
iq

iqe e e
 




 

    ,             (1.10) 

откуда получаем, что q = 6n, n – целое число.  

Окончательно имеем: 

2 2 4 4

CF 0 0 0 0H B C B C  .      (1.11) 
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Гамильтониан спин-орбитального взаимодействия имеет вид: 

SOH ( )i i

i

   l s ,              (1.12) 

где li – оператор орбитального момента i-го электрона, si – оператор 

спинового момента i-го электрона. Скалярное произведение можно расписать 

через произведение операторов проекций моментов: 

( ) x x y y z zl s l s l s   l s .           (1.13) 

Введем операторы повышения и понижения x yl l il   ,

 
x ys s is   . Тогда 

гамильтониан спин-орбитального взаимодействия приобретает вид: 

SO

1 1
H ( )

2 2
z z

i

l s s l s l        .      (1.14) 

Операторы , , , , ,z zl l l s s s     действуют на одноэлектронные волновые 

функции (1.3б) следующим образом: 

, ( 1)( ) , 1l l m l m l m l m       

, ( 1)( ) , 1l l m l m l m l m       

, ,l l m m l m       (1.15) 

, ( 1)( ) , 1s s s s s          

, ( 1)( ) , 1s s s s s          

, ,zs s s   . 

Спин-орбитальное взаимодействие расщепляет термы на мультиплеты с 

кратностью вырождения 2 1zJ  , где zJ  - проекция полного момента 

 J L S  на ось z. 

Постоянная спин-орбитального взаимодействия выбрана равной -1341 см  . 

Величины параметров КП 
2

0B  = -4380 см
-1

, 
4

0B  = -691 см
-1

 были выбраны так, 

чтобы результаты расчетов магнитных моментов и высоты барьера 
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соответствовали экспериментальным данным, приведенным в работах [1], 

[2]. 

Нижние уровни энергии и соответствующие магнитные моменты приведены 

в таблице 3. 

Таблица 3. Нижние уровни энергии и магнитные моменты 

Номер уровня E, см
-1

 M, B  

1 0 -5 

1 0 5 

2 2 3.35 

2 2 -3.35 

3 123 1.5 

3 123 -1.5 

4 328 0.13 

4 328 -0.13 

 

Возникает вопрос о механизмах формирования кристаллического поля. 
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 Глава 2. Параметры кристаллического поля 

2.1 Расчет параметров кристаллического поля в приближении точечных 

зарядов 

В модели точечных зарядов ионы окружения (лиганды) 

представляются в виде точечных зарядов Ze. На ион, помещенный в начало 

координат, действует электрическое поле, созданное точечными лигандами. 

Энергия взаимодействия электрона, локализованного на ионе железа, и 

лиганда равна: 

2

CFH
Ze

 
R r

,     (2.1) 

где ( , , )r  r  - сферические координаты электрона иона железа, 

( , , )R ФR  - сферические координаты лиганда (r < R).   

           Выражение в правой части (2.1) можно разложить в ряд по 

сферическим функциям: 

2 *

CF

0

1 4
H ( , ) ( , )

(2 1)

kk

kq kq

k q k

r
Ze Y Y Ф

R R k


 



 

 
   

 
 .            (2.2) 

Как было показано ранее (в Главе 1), требованиям инвариантности 

относительно операций симметрии соответствуют значения k = 2, k = 4, q = 0. 

Вычислим матричные элементы гамильтониана (2.2) на одноэлектронных 

волновых функциях: 

2 32

1

* 2( ) 2 4( ) 4

0 0 0 0 0 0

3, 2 | | 3, 2 4
(2 1)

( , ) ( , ) .

k

CF k
k

точ точ

k k

r
n l H n l Ze

R k

Y Ф Y B C B C



 


      



   


    (2.3) 
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Параметры кристаллического поля в модели точечных зарядов равны 

(взаимодействие только с одним лигандом): 

2
(точ)

0 01 32
( , )k k k

k

Ze
B r C Ф

R 


  .                      (2.4) 

Чтобы вычислить параметры кристаллического поля с учетом всего 

кристалла, необходимо провести суммирование по всем лигандам: 

(точ) 2

0 0132
( , )k k kL

k
L

Z
B e r C Ф

R 
   .             (2.5) 

Расчет в приближении точечных зарядов дает неудовлетворительные 

результаты, а именно, 
2 -1

0 20348 смB   и 
4 -1

0 2248 смB  . Такое сильное 

несоответствие параметров кристаллического поля, полученных из анализа 

экспериментальных данных в Главе 1, и параметров, рассчитанных в модели 

точечных зарядов, связано с тем, что ближайшие к Fe
1+

 ионы N
3-

 нельзя 

рассматривать, как точечные заряды. Электронная оболочка иона N
3-

 

перекрывается с электронной оболочкой Fe
1+

. Поэтому вклад в 

кристаллическое поле от двух ближайших ионов азота необходимо 

рассчитать отдельно, учитывая перекрывание электронных оболочек. 
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2.2 Биполярное разложение кулоновского потенциала 

Чтобы получить правильные значения параметров кристаллического 

поля, необходимо учесть эффекты перекрывания электронных оболочек 

ионов Fe
1+

 и N
3-

. 

Энергия кулоновского взаимодействия электрона из 3d-оболочки иона 

железа с электронами из 2p-оболочки иона азота равна 

2
2 2

3 1 2 ' 2 1 2

' 1 2

( ) ( )d m pm

m

e
W d d 


 r r r r

r r
.       (2.6) 

Учитывая формулу (1.3а) для (2.6), получаем: 

2
2

2 * 2 2

2 ' 2 3 1 2 1 1 2 1 1 1 2 1 2 1 2

' 1 2

2
( ) ( ) ( , ) ( , )pm d m m

m

e
W R r Y Y r r drdr d d      


 r

r r
. 

Тогда для гамильтониана кристаллического поля получаем выражение: 

2
2

2 2

CF 2 ' 2 3 1 1 1 2

' 1 2

2
H ( ) ( ) ,pm d

m

e
R r r drd


 r r

r r
         (2.7) 

где r1 и r2 – радиус-векторы электронов ионов железа и азота относительно 

их ядер (рис. 5). 

 

Рис. 5. Взаимодействие между 3d и 2p электронами 
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Согласно статье [5] обратное расстояние между электронами можно 

представить в виде: 

1 2

1 2

1 2

*

1 2 1 1 2 2

, ,1 2

1
( , ; ) ( , ) ( , )k kq

k k q q

k k q

b r r R C C   



r r

.  (2.8) 

Коэффициенты 
1 2

q

k kb  приведены ниже. Подставив (2.8) в (2.7), получаем: 

1

1 2

1 2

2

2 2 2 2 2

CF 1 1 1 2 3 1 1 2 2 2 1 2

,
',

* *

2 2 2 1 ' 2 2 1 ' 2 2

H 2 ( , ) ( , ; ) ( ) ( )

( , ) ( , ) ( , ).

k q

q k k d p

k k
m q

k

q m m

e C b r r R R r r R r r drdr

d C Y Y

 

     

 

 

 


 

Комплексно-сопряженные сферические тензоры и функции выражаются 

через несопряженные: 

*

, ,( , ) ( 1) ( , )m

l m l mY Y     .       (2.9) 

Произведение трех сферических функций можно выразить через 3j-символы. 

Учитывая формулы (1.5) и (2.9), получаем: 

2

2

* *

2 2 2 1 ' 2 2 1 ' 2 2

'

2 , 2 2 1, ' 2 2 1 ' 2 2

2

' 2

2

2 2

( , ) ( , ) ( , )

4
( 1) ( , ) ( , ) ( , )

2 1

(2 1)(2 1 1)(2 1 1)4
( 1)

2 1 4

1 1 1 1
.

0 0 0 ' '

k

q m m

q m

k q m m

q m

d C Y Y

d Y Y Y
k

k

k

k k

m q m

     


     







 



 

    


    
   



   
    

    





 (2.10) 
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Для 3j-символов справедливо следующее соотношение: 

,0 ,0( 1)
0 0

m

K q

m

K l l K l l

q m m q
 

   
     

   
 .  (2.11) 

Используя (2.11), получаем для HCF: 

1

1 2

1 2

2

2 2 2 2 2

CF 1 1 1 2 3 1 1 2 2 2 1 2

,

2 0 2 2 2 2

,0 ,0 0 1 1 0 1 2 3 1 1 2 2 2 1 2

H 2 ( , ) ( , ; ) ( ) ( )

3 ( 1) 6 ( , ) ( , ; ) ( ) ( ) .

k q

q k k d p

k k
q

q k

k q k d p

k

e C b r r R R r r R r r drdr

e C b r r R R r r R r r drdr

 

   

 

   

 

 
 

Сравнивая с формулой (2.1), получаем выражение, определяющее 0

kB : 

2 0 2 2 2 2

0 0 1 2 3 1 2 2 1 2 1 26 ( , ; ) ( ) ( )k

k d pB e b r r R R r R r r r drdr   .        (2.12) 

Далее необходимо учесть явный вид функции 
1 2 1 2( , ; )q

k kb r r R . 
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2.3 Явный вид функции 
0

0 1 2( , ; )kb r r R  

Есть четыре функциональные зависимости 0

0 1 2( , ; )kb r r R , 

соответствующие четырем областям, показанным на рисунках 6 и 7. 

 

             

    Рис. 6. Четыре области, определяющие функцию 
0

0 1 2( , ; )kb r r R  

Область I: 1 2R r r  ,  
0 ( ) 1
0 1 2 1

( , ; )
k

I

k k

r
b r r R

R 
   

Область III: 2 1r R r  ,  
0 ( )

0 1 2( , ; ) 0III

kb r r R   

Область IV: 1 2r R r  ,  
0 ( )

0 1 2 1

1

( , ; )
k

IV

k k

R
b r r R

r 
  

Выражения для 0

0kb  получаются в результате двукратного применения 

формулы разложения обратного расстояния по сферическим функциям 

(отсюда и название – биполярное разложение). 
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Рис. 7. Альтернативное определение четырех областей 

Для области II (в которой и происходит перекрывание) выражение более 

сложное. Точные формулы приведены в статьях [6], [7]. Здесь же мы дадим 

только окончательные выражения для 
0

20 1 2( , ; )b r r R  и 
0

40 1 2( , ; )b r r R . 

 

Область II: 

3 6
0 ( ) 1 2 2
20 1 2 3 6

2 1 1

2 2 4

1 2 1 2

2 4

2 2 1

2 2 2 3 2

2 1 2

3 3 2

1 2 2 1

6( ) ( )
( , ; ) 5

32

3( ) 4 ( )1
5

8 4 2

( ) 2 3( )
5 .

32 ( )

II r r R R r
b r r R

R r r r

r R r r R r

Rr R R r r

R r r R r

R r r R r r

  
    

 

   
        

   

  
    

 

  (2.13) 
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2 2 4 2 7
0 ( ) 2 2 1
40 1 2 5 3 2 7

1 2 1 2

2 2 2 2 2 4 5

2 2 2 1

3 2 4 5

1 2 1 2

2 2 2 2 2 6

1 2 2 2

2 4 6

2 1

5( ) 7( ) 2
( , ; ) 9

512 ( )

( ) 14( ) 5( ) 4
3 9

128 4 ( )

5( ) 35( ) ( )
1 3

32 8

II R r R r r
b r r R

R r r r R r

R r R r R r r

R r r R r R r

r R r R r R r

Rr R R r

  
    

 

    
        

   

   
      

 

3

1

3

2

3 2 2 8

1 2 2 1

3 2 8

2 1 2

5 10

1 2 2

5 10

2 1 1

2

( )

5 14( ) ( ) 8
3 9

256 4 ( )

7 ( ) 10( )
9 ,

512

r

R r

r R r R r r

R r R r R r

r R r R r

R r r r

 
 

 

   
        

   

  
    

 

    (2.14) 

Тогда для 
2

0B  и 
4

0B  получаем следующую формулу: 

2

2

2 2

2 2

2 2 2 2 2 0 ( ) 2 2 2 2 2 0 ( )

0 3 1 2 2 1 2 0 1 2 3 1 2 2 1 2 0 1 2

0 0 0

2 2 2 2 2 0 ( ) 2 2 2 2 2 0 ( )

3 1 2 2 1 2 0 1 2 3 1 2 2 1 2 0 1 2

0

6 ( ) ( ) 6 ( ) ( )

6 ( ) ( ) 6 ( ) ( )

R rR

k I IV

d p k d p k

R r

R r rR

II II

d p k d p k

R r r R

B e R r R r r r b drdr e R r R r r r b drdr

e R r R r r r b drdr e R r R r r r b drdr

  



 

 

  

 

   

  .

R

R



 

 

  (2.15)  
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2.4 Радиальные волновые функции R3d и R2p 

 

Радиальная волновая функция 3d-электрона иона Fe
1+

 взята из статьи [8] 

(волновые функции многоэлектронных атомов – это приближенные 

формулы, полученные путем решения уравнений Хартри-Фока): 

5
2

3

1

( ) kB r

d k k

k

R r r n A e




  ,        (2.16) 

nk – нормировочная постоянная. 

Таблица 4. Постоянные, определяющие радиальную 3d волновую функцию 

(Fe
1+

)  

k 1 2 3 4 5 

Ak 0.34622 0.02802 0.26834 0.35659 0.18568 

Bk 3.70325 11.5 6.01822 2.30361 1.40275 

 

Радиальной волновой функции для электронов 2p-оболочки иона N
3-

 в 

литературе нет, но есть радиальные волновые функции для электронов F
1-

 и 

O
2-

, которые имеют ту же электронную конфигурацию, что и N
3-

. Однако 

заряд ядра фтора – 9|e|, у кислорода – 8|e|, у азота – 7|e|, поэтому радиальные 

волновые функции N
3-

 (а с ними и <r>, <r
2
>) шире, чем у O

2-
. Сравнивая 

средние значения <r> и <r
2
> для фтора и кислорода, можно предположить, 

какие средние значения должны получаться для иона азота. 

Таблица 5. Средний и среднеквадратичный радиусы 

 F
1-

 O
2-

 

<r>, aB 1.255 2.227 

<r
2
>, aB 2.205 9.71 
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Таблица 5 позволяет найти разницу в <r> и <r
2
> для различных ионов: 

1- 2-F O
0.972r r r       , 

1- 2-

2 2 2

F O
7.505r r r       . 

Тогда предположим, что средний и среднеквадратичный радиусы 2p-

оболочки иона N
3-

 отличаются от среднего и среднеквадратичного радиусов 

2p-оболочки иона O
2-

 на r  и 
2r  соответственно, т.е.: 

3- 2-N O
2.227 0.972 3.2r r r       , 

3- 2-

2 2 2

N O
9.71 7.505 17.22r r r       . 

 

Рис. 8. Радиальные волновые функции электрона 2p-оболочки ионов F
1-

, O
2-

, 

N
3-

. 
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Вариацией постоянных Bk в выражении для радиальной волновой функции 

2p-оболочки иона O
2-

 получены следующие значения средних величин: 

3-N
3.2r   , 

3-

2

N
17.262r   . 

 Радиальная волновая функция электрона 2p-оболочки иона N
3-

 имеет 

следующий вид: 

5

2

1

( ) kB r

p k k

k

R r r n A e




  ,       (2.17) 

nk – нормировочная постоянная 

Таблица 6. Постоянные, определяющие радиальную 2p волновую функцию 

N
3-

 

k 1 2 3 4 5 

Ak 0.5951 0.29159 0.5153 -0.13422 0.01046 

Bk 1.1835 2.43 0.3902 0.78 8.1268 

 

Вклады в параметры кристаллического поля от остова иона азота и вклады от 

внешней электронной оболочки, соответственно, равны: 

2(остов) -1

0 12518.4 смB    и 
4(остов) -1

0 1141.44 смB   , 

2(внеш) -1

0 13020 смB   и 
4(внеш) -1

0 2124 смB  . 

Вклад от остальной решетки (за исключением 2 ближайших ионов азота): 

2(реш) -1

0 3464.11 смB    и 
4(реш) -1

0 161.93 смB  . 
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В итоге получаем следующие параметры кристаллического поля: 

2 2(остов) 2(внеш) 2(реш) -1

0 0 0 02 ( ) 2459.9смB B B B      , 

4 4(остов) 4(внеш) 4(реш) -1

0 0 0 02 ( ) 2127.05смB B B B     . 

Дальнейшее уточнение постоянных кристаллического поля возможно, если 

учесть неортогональность электронных волновых функций ионов железа и  

азота и процессы виртуального переноса электронов (ковалентность). 

 

2.5 Расчет параметров кристаллического поля в модели обменных 

зарядов 

 

Согласно модели обменных зарядов волновые функции электрона, 

локализованного на центральном ионе (в нашем случае на ионе Fe
1+

) и 

электрона, локализованного на лиганде, перекрываются. 

Матричные элементы гамильтониана электрона в поле лиганда v в 

базисе одноэлектронных волновых функций имеют следующий вид [9]: 

2
ec 2

, , H ', ', ' ( | ' ') | | ' ' '
e

n l m n l m G nl n l nlm n l m
R

   


   ,   (2.18) 

где '' '' ''a n l m 
  - волновые функции электронов, локализованных на 

заполненных оболочках лиганда, в системе координат SL, связанной с 

лигандом, причем ось ZL направлена вдоль радиус-вектора лиганда R . 

( | ' ')G nl n l  - безразмерные параметры модели. Для расчета интегралов (2.18) 

необходимо повернуть систему координат S, связанную с центральным 

ионом, так, чтобы оси новой системы координат S’ были параллельны осям 

SL. 
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Данный поворот осуществляет следующее преобразование [10]: 

( )

''

''

D ( ) ''( )l

m m

m

nl m nl m  ,    (2.19) 

где ( )

''D l

m m  - матрица порядка 2l+1. Элементы матрицы являются функции 

углов. С учетом соотношения 
( ) * ' ( )

' ',D ( 1) Dl m m l

m m m m



    и (2.19), выражение (2.18) 

принимает вид: 

2
ec ''

, '', '''

( ) ( )

'', ''' '

2
, , H ', ', ' ( | ' ')( 1)

D D ''( ) | | ' ' '''( ) .

m m

m m

l l

m m m m

e
n l m n l m G nl n l

R

nlm n l m

 


    





 

 




   (2.20) 

Произведение матриц D можно представить в виде: 
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Подставив (2.21) в (2.20), получаем: 
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 (2.22) 

Чтобы получить параметры кристаллического поля в модели обменных 

зарядов, выделим сферический тензор в выражении (2.22). Для этого выразим 

матричный элемент сферического тензора через 3j-символ: 
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Учитывая формулу (1.5), получим интеграл  (2.23) в виде: 
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Если в выражении (2.23) провести замену 'q m m  , то можно 3j-символ 

заменить матричным элементом сферической функции (2.24): 
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Тогда из (2.25) следует, что параметры кристаллического поля в модели 

обменных зарядов равны: 
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Волновые функции электронов на заполненных оболочках лигандов имеют 

вид '', '',n l m  . С учетом ортогональности сферических функций и 

соотношения 
( )

0,D ( ) ( , )p p

q qC    , выражение (2.26) принимает вид: 
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Проведем суммирование по лигандам и учтем, что q = 0. Тогда (2.27) 

запишется в виде: 
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Учитывая только внешнюю оболочку лиганда N
3-

 (2p
6
: n’ = 2, 

l’ = 1, 0, 1,1m   ) для (2.29) получаем: 

, ' ' , ' ' ' ' ' , ' ' ' 'nl n l nl n l nl n l ll nl n l nl n l

p pS G S S G S S       ,         (2.30) 
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22

2 1  , 22

4 4 / 3   . Параметры ,G G   можно найти, используя 

экспериментальные данные. Мы будем пользоваться однопараметрической 

моделью обменных зарядов, когда G G G   . 

Вычислим интегралы перекрывания (в нашем случае n = n’ = 3 и l = l’ = 2): 
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32
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3,2, 1| '',1, 1 0.0896.
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Тогда вклад от двух ионов азота в модели обменных зарядов равен: 

2
(обм) 32,32

0 0

2 (2 1)
2 ( , ) ( ).
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p p

p

e p
B C Ф S R

R


                (2.33) 

Учитывая формулы (1.10), (2.30) и (2.32) получаем для (2.33) при p = 2 и 

p = 4: 

2(обм) -1

0 1498.5 смB G  , 

4(обм) -1

0 1407.45 смB G   . 

Учитывая все вклады в параметры КП, получаем значения: 

2 -1 -1

0 1498.5 см 2459.9 смB G   , 

4 -1 -1

0 1407.45 см 2127.05 смB G    . 

Параметр G может быть выбран, исходя из следующих соображений. В 

результате перекрывания электронных плотностей ионов азота и железа, в 

области между ними образуется эффективный положительный заряд 2|S|
2
e (S 

– интеграл перекрывания). Этот заряд взаимодействует с ионами азота и 

железа. Параметр G служит мерой этого взаимодействия, и его можно 

представить в виде: 

1 2

1 2

1 3
2 ( )G R R

R R

 
   

 
         (2.34) 

где R1 – расстояние между ионом железа и эффективным обменным зарядом, 

R2 – расстояние между ионом азота и эффективным зарядом. Обычно R1 < R2 

(ионные радиусы катионов меньше, чем у анионов). В нашем случае, исходя 
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из (2.34), можно предположить, что G мало ( 1 ) и больше нуля. Тогда мы 

получаем, что вычисленные параметры КП неплохо соотносятся с 

параметрами, полученными в результате анализа экспериментальных 

данных.  

Мы выяснили, что ближайшие ионы азота нельзя рассматривать, как 

точечные. Необходимо учитывать эффекты перекрывания электронных 

плотностей ионов азота и железа. Эти эффекты вносят большой вклад в 

параметры КП, что видно из сравнения параметров КП, вычисленных в 

рамках модели точечных зарядов и параметров, рассчитанных с учетом 

эффектов перекрывания.  
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Глава 3. Расчет спектра иона железа в Li3N:Fe1+
  во 

внешнем магнитном поле 

3.1 Энергия Зеемана 

При помещении магнитного момента m во внешнее магнитное поле с 

индукцией B  он приобретает энергию: 

  ( )W   m B . 

Магнитный момент атома (иона) определяется орбитальной и спиновой 

составляющими полного углового момента по следующей формуле: 

(2 ) B m S L ,                          (3.1) 

где 

           

,i

i

L l  i

i

S s  

- орбитальный и спиновый моменты атома, суммы соответствующих 

моментов отдельных электронов. В нашем случае суммирование  проводится 

только по внешней 3d-оболочке, т.к. у замкнутых оболочек спиновый и 

орбитальный моменты равны нулю.  

       В формуле (3.1) 
26

B

e

927.4 10 Дж/Тл
2

eh

m c
     - магнетон Бора. 

Согласно теореме Крамерса уровни энергии системы, содержащей 

нечетное число электронов, вырождены как минимум дважды. Это 

вырождение может снять только магнитное поле. В нашей системе уровни 

энергии представляют собой крамерсовы дублеты, что показывает таблица 3. 
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3.2 Расчет спектра с учетом магнитного поля. Магнитный момент 

 

При учете магнитного поля гамильтониан иона железа принимает вид: 

ee SO CF BH H H H (2 )     S L B .           (3.2) 

Уровни энергии зависят от магнитного поля. Крамерсовы дублеты 

расщепляются на 2 подуровня. На рисунках 9 и 10 представлены 

соответствующие графики. 

 

Рис.9. Спектр иона Fe
1+

 в магнитном поле 
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Рис. 10. Спектр иона Fe
1+

 в магнитном поле в более крупном масштабе 

Как и ожидалось, магнитное поле расщепило крамерсовы дублеты. Разность 

энергий между расщепленными уровнями пропорциональна магнитному 

моменту соответствующего крамерсова дублета. 

        На рисунке 10 видно, что уровни с различными значениями магнитного 

момента пересекаются при определенных значениях магнитного поля B 

(например, при B = 5000 Э или B = 27000 Э). Следовательно, при таких 

магнитных полях скорости релаксации могут возрастать, т.к. при 

антипересечениях перемешиваются волновые функции состояний с  

различными магнитными моментами (например, при рассмотрении перехода 

из состояния с B5  на состояние с B5  не требуется привлекать какие-либо 

дополнительные механизмы  связи состояний с моментами B5  и B3 ). 
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       Также был рассчитан средний магнитный момент в зависимости от 

магнитного поля при температуре T = 2 K. Термодинамическое среднее 

определяется следующей формулой: 

B

B

H/

H/

Sp( )

Sp( )

k T

k T

e

e






 

M
M .    (3.3) 

 

Рис. 11. Средний магнитный момент в зависимости от магнитного поля B при 

температуре T = 2 K 

Магнитный момент достигает при насыщении B5 , что согласуется с 

экспериментальными данными. 
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Глава 4. Расчет спектра иона железа в Li3N:Fe2+ 

 

Ион железа Fe
2+

 имеет электронную конфигурацию 3d
6
. Полное число 

состояний равно 
6

10

10!
210

6!(10 6)!
C  


. 

Так же, как и в случае одновалентного железа, гамильтониан электрон-

электронного взаимодействия представим в виде: 

ee 2 2 4 4H f fF F    . 

Параметры F2 и F4 будут уже другими, нежели в случае одновалентного 

железа. Чтобы сопоставить со значениями, описанными в литературе [4], 

параметры были выбраны следующим образом: F2 = 57326, F4 = 42321 (см
-1

). 

Вычисленные энергии термов иона Fe
2+

: 

Таблица 7. Термы иона Fe
2+

 

Терм E, см
-1

 Кратность 

вырождения 

Терм E, см
-1

 Кратность 

вырождения 

5
D 0 25 

1
S1 30034 1 

3
H 16196 33 

1
D1 31014 5 

3
P1 18558 9 

1
F 34645 7 

3
F1 18601 21 

3
F2 40428 21 

3
G 19646 27 

3
P2 40472 9 

1
I 24293 13 

1
G2 46368 9 

3
D 24477 15 

1
D2 60773 5 

1
G1 26097 9 

1
S2 79927 1 

 

При учете спин-орбитального взаимодействия и взаимодействия с 

кристаллическим полем получаются следующие уровни энергии – 
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см. Таблицу 8 (представлены нижние 8). В расчете были использованы 

параметры кристаллического поля 0

2B   3330 см
-1

 , 0

4B  -2012 см
-1

 

Таблица 8. Нижние уровни энергии и магнитные моменты иона Fe
2+

 в Li3N:Fe 

Номер уровня E, см
-1

 M, B  

1 0 4.997 

1 0 -4.997 

2 95 2.999 

2 95 -2.999 

3 203 1.023 

3 203 -1.022 

4 297 0.069 

4 364 -0.069 

 

Введенные параметры (мы предполагаем нелокальную компенсацию 

избыточного заряда иона железа вследствие появления вакансии в 

подрешетке ионов лития) дают возможность получить теоретическую 

низкотемпературную полевую зависимость намагниченности, 

согласующуюся, как и в случае изовалентного замещения ионов лития 

ионами одновалентного железа, с данными измерений (см. рис. 12).   
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Рис. 12 Средний магнитный момент двухвалентного железа в зависимости от 

магнитного поля B при температуре T = 2 K 
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Заключение 

В данной работе были исследованы свойства ионов Fe
1+

 и Fe
2+ 

в 

кристалле Li3N. Были получены следующие результаты: 

1) Рассчитаны спектры ионов Fe
1+

 и Fe
2+

 в гексагональном кристаллическом 

поле. 

2) Рассчитаны параметры КП в модели точечных зарядов. 

3) Рассчитан вклад в параметры КП от двух ближайших ионов азота в модели 

обменных зарядов. Также учтено перекрывание электронных оболочек ионов 

азота и железа, приводящее к уменьшению энергии электростатического 

взаимодействия. 

4) Рассчитаны спектры ионов железа в магнитном поле, магнито-полевые 

зависимости намагниченности.  

В результате работы было показано, что расчет спектральных и 

магнитных свойств кристалла Li3N:Fe в рамках теории кристаллического 

поля дает возможность интерпретировать и воспроизвести данные 

измерений. Результаты работы также открывают возможность найти 

физически  обоснованные параметры электрон-фононного взаимодействия и 

развить в дальнейшем теорию спиновой динамики, в частности, 

туннелирования намагниченности, в исследованных соединениях. 

 

 

Автор работы выражает благодарность научному руководителю 

Малкину Борису Залмановичу за помощь на всех этапах выполнения 

магистерской работы.  
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